These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 38814057)
1. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M; Grégoire DS; Bain JG; Blowes DW; Hug LA Appl Environ Microbiol; 2024 Jun; 90(6):e0014324. PubMed ID: 38814057 [TBL] [Abstract][Full Text] [Related]
2. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313 [TBL] [Abstract][Full Text] [Related]
3. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Pakostova E; Schmall AJ; Holland SP; White H; Ptacek CJ; Blowes DW Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033946 [TBL] [Abstract][Full Text] [Related]
4. Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage. Hoagland B; Rasmussen KL; Singha K; Spear JR; Navarre-Sitchler A Appl Environ Microbiol; 2024 Mar; 90(3):e0198723. PubMed ID: 38391193 [TBL] [Abstract][Full Text] [Related]
5. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
6. Metagenome-Assembled Genomes of Novel Taxa from an Acid Mine Drainage Environment. Grettenberger CL; Hamilton TL Appl Environ Microbiol; 2021 Aug; 87(17):e0077221. PubMed ID: 34161177 [TBL] [Abstract][Full Text] [Related]
7. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853 [TBL] [Abstract][Full Text] [Related]
8. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031 [TBL] [Abstract][Full Text] [Related]
9. Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: A culture independent analysis. Dhal PK; Sar P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(6):694-709. PubMed ID: 24521415 [TBL] [Abstract][Full Text] [Related]
10. Spatial and Temporal Constraints on the Composition of Microbial Communities in Subsurface Boreholes of the Edgar Experimental Mine. Thieringer PH; Honeyman AS; Spear JR Microbiol Spectr; 2021 Dec; 9(3):e0063121. PubMed ID: 34756066 [TBL] [Abstract][Full Text] [Related]
11. Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering. Nancucheo I; Johnson DB Appl Environ Microbiol; 2011 Dec; 77(23):8201-8. PubMed ID: 21965397 [TBL] [Abstract][Full Text] [Related]
12. Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities. Sharma S; Lee M; Reinmann CS; Pumneo J; Cutright TJ; Senko JM Chemosphere; 2020 Jun; 249():126117. PubMed ID: 32088465 [TBL] [Abstract][Full Text] [Related]
13. Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Zhou WH; Huang LN Extremophiles; 2008 Sep; 12(5):657-64. PubMed ID: 18512002 [TBL] [Abstract][Full Text] [Related]
14. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Diaby N; Dold B; Pfeifer HR; Holliger C; Johnson DB; Hallberg KB Environ Microbiol; 2007 Feb; 9(2):298-307. PubMed ID: 17222129 [TBL] [Abstract][Full Text] [Related]
15. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit. Diaby N; Dold B; Rohrbach E; Holliger C; Rossi P Sci Total Environ; 2015 Nov; 533():110-21. PubMed ID: 26151655 [TBL] [Abstract][Full Text] [Related]
16. Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Valentín-Vargas A; Neilson JW; Root RA; Chorover J; Maier RM Sci Total Environ; 2018 Mar; 618():357-368. PubMed ID: 29132003 [TBL] [Abstract][Full Text] [Related]
18. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483 [TBL] [Abstract][Full Text] [Related]
19. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. Liu JL; Yao J; Wang F; Min N; Gu JH; Li ZF; Sunahara G; Duran R; Solevic-Knudsen T; Hudson-Edwards KA; Alakangas L Environ Pollut; 2019 Apr; 247():98-107. PubMed ID: 30669085 [TBL] [Abstract][Full Text] [Related]
20. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China. Li B; Wang X; Liu G; Zheng L; Cheng C Environ Sci Pollut Res Int; 2022 Oct; 29(49):74983-74997. PubMed ID: 35648344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]