These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38814088)
1. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
2. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
3. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related]
4. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea. Müller N; Leroch M; Schumacher J; Zimmer D; Könnel A; Klug K; Leisen T; Scheuring D; Sommer F; Mühlhaus T; Schroda M; Hahn M New Phytol; 2018 Aug; 219(3):1062-1074. PubMed ID: 29790574 [TBL] [Abstract][Full Text] [Related]
5. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. Canessa P; Schumacher J; Hevia MA; Tudzynski P; Larrondo LF PLoS One; 2013; 8(12):e84223. PubMed ID: 24391918 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267 [TBL] [Abstract][Full Text] [Related]
7. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. Schumacher J; Pradier JM; Simon A; Traeger S; Moraga J; Collado IG; Viaud M; Tudzynski B PLoS One; 2012; 7(10):e47840. PubMed ID: 23118899 [TBL] [Abstract][Full Text] [Related]
8. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
9. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
10. Redox systems in Botrytis cinerea: impact on development and virulence. Viefhues A; Heller J; Temme N; Tudzynski P Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673 [TBL] [Abstract][Full Text] [Related]
11. Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. Ma L; Liu T; Zhang K; Shi H; Zhang L; Zou G; Sharon A mSystems; 2022 Dec; 7(6):e0104222. PubMed ID: 36468854 [TBL] [Abstract][Full Text] [Related]
12. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
13. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. Schumacher J; Simon A; Cohrs KC; Viaud M; Tudzynski P PLoS Genet; 2014 Jan; 10(1):e1004040. PubMed ID: 24415947 [TBL] [Abstract][Full Text] [Related]
14. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906 [TBL] [Abstract][Full Text] [Related]
15. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
16. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. Hou J; Feng HQ; Chang HW; Liu Y; Li GH; Yang S; Sun CH; Zhang MZ; Yuan Y; Sun J; Zhu-Salzman K; Zhang H; Qin QM New Phytol; 2020 Jan; 225(2):930-947. PubMed ID: 31529514 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Viefhues A; Schlathoelter I; Simon A; Viaud M; Tudzynski P Eukaryot Cell; 2015 Jul; 14(7):636-51. PubMed ID: 25934690 [TBL] [Abstract][Full Text] [Related]
18. Interactions between Core Elements of the Rojas V; Salinas F; Romero A; Larrondo LF; Canessa P J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628742 [No Abstract] [Full Text] [Related]
19. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic changes in the PacC transcription factor deletion mutant of the plant pathogenic fungus Botrytis cinerea under acidic and neutral conditions. Rascle C; Malbert B; Goncalves I; Choquer M; Bruel C; Poussereau N BMC Genom Data; 2024 Oct; 25(1):87. PubMed ID: 39385086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]