These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38814246)
1. Evidence of a Rod-like Structure for Hydroxypropyl Cellulose Samples in Aqueous Solution. Yoshida M; Iwase H; Horikawa Y; Shikata T Biomacromolecules; 2024 Jul; 25(7):4255-4266. PubMed ID: 38814246 [TBL] [Abstract][Full Text] [Related]
2. Conformation and Structure of Hydroxyethyl Cellulose Ether with a Wide Range of Average Molar Masses in Aqueous Solutions. Yoshida M; Iwase H; Shikata T Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365525 [TBL] [Abstract][Full Text] [Related]
3. Structure and Conformation of Hydroxypropylmethyl Cellulose with a Wide Range of Molar Masses in Aqueous Solution─Effects of Hydroxypropyl Group Addition. Saiki E; Iwase H; Horikawa Y; Shikata T Biomacromolecules; 2023 Sep; 24(9):4199-4207. PubMed ID: 37594913 [TBL] [Abstract][Full Text] [Related]
4. Elongated Rodlike Particle Formation of Methyl Cellulose in Aqueous Solution. Saiki E; Yoshida M; Kurahashi K; Iwase H; Shikata T ACS Omega; 2022 Aug; 7(33):28849-28859. PubMed ID: 36033728 [TBL] [Abstract][Full Text] [Related]
5. Rigid Rod-like Viscoelastic Behaviors of Methyl Cellulose Samples with a Wide Range of Molar Masses Dissolved in Aqueous Solutions. Nakagawa D; Saiki E; Horikawa Y; Shikata T Molecules; 2024 Jan; 29(2):. PubMed ID: 38257380 [TBL] [Abstract][Full Text] [Related]
6. Reconsideration of the conformation of methyl cellulose and hydroxypropyl methyl cellulose ethers in aqueous solution. Arai K; Horikawa Y; Shikata T; Iwase H RSC Adv; 2020 May; 10(32):19059-19066. PubMed ID: 35518322 [TBL] [Abstract][Full Text] [Related]
7. Characterization of aggregate structure in mercerized cellulose/LiCl.DMAc solution using light scattering and rheological measurements. Aono H; Tatsumi D; Matsumoto T Biomacromolecules; 2006 Apr; 7(4):1311-7. PubMed ID: 16602754 [TBL] [Abstract][Full Text] [Related]
8. A New Concept for Interpretation of the Viscoelastic Behavior of Aqueous Sodium Carboxymethyl Cellulose Systems. Yoshida M; Nakagawa D; Hozumi H; Horikawa Y; Makino S; Nakamura H; Shikata T Biomacromolecules; 2024 Jun; 25(6):3420-3431. PubMed ID: 38733614 [TBL] [Abstract][Full Text] [Related]
9. The influence of the molecular weight of the water-soluble polymer on phase-separated films for controlled release. Andersson H; Häbel H; Olsson A; Sandhagen S; von Corswant C; Hjärtstam J; Persson M; Stading M; Larsson A Int J Pharm; 2016 Sep; 511(1):223-235. PubMed ID: 27349793 [TBL] [Abstract][Full Text] [Related]
10. New insights on the influence of manufacturing conditions and molecular weight on phase-separated films intended for controlled release. Moore HA; Marucci M; Härdelin L; Hjärtstam J; Stading M; von Corswant C; Larsson A Int J Pharm; 2018 Jan; 536(1):261-271. PubMed ID: 29157964 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic behavior of high molar mass linear polyglycidol in dilute aqueous solution. Rangelov S; Trzebicka B; Jamroz-Piegza M; Dworak A J Phys Chem B; 2007 Sep; 111(38):11127-33. PubMed ID: 17803304 [TBL] [Abstract][Full Text] [Related]
12. Evidence of Long Two-Dimensional Folding Chain Structure Formation of Poly(vinylidene fluoride) in Saiki E; Nohara Y; Iwase H; Shikata T ACS Omega; 2022 Jul; 7(26):22825-22829. PubMed ID: 35811863 [TBL] [Abstract][Full Text] [Related]
13. Preparation of cholesteric (hydroxypropyl)cellulose/polymer networks and ion-mediated control of their optical properties. Chiba R; Nishio Y; Sato Y; Ohtaki M; Miyashita Y Biomacromolecules; 2006 Nov; 7(11):3076-82. PubMed ID: 17096534 [TBL] [Abstract][Full Text] [Related]
14. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Chen X; Burger C; Wan F; Zhang J; Rong L; Hsiao BS; Chu B; Cai J; Zhang L Biomacromolecules; 2007 Jun; 8(6):1918-26. PubMed ID: 17472335 [TBL] [Abstract][Full Text] [Related]
16. Dielectric properties of the free water in hydroxypropyl cellulose. Sudo S J Phys Chem B; 2011 Jan; 115(1):2-6. PubMed ID: 21158378 [TBL] [Abstract][Full Text] [Related]
17. Nanofiber formation of hydroxylpropylcellulose (HPC). Yan L; Lin W; Bangal PR Macromol Biosci; 2006 Jul; 6(7):532-9. PubMed ID: 16921540 [TBL] [Abstract][Full Text] [Related]
18. Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin. Barty-King CH; Chan CLC; Parker RM; Bay MM; Vadrucci R; De Volder M; Vignolini S Adv Mater; 2021 Sep; 33(37):e2102112. PubMed ID: 34323315 [TBL] [Abstract][Full Text] [Related]
19. True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures. Rein DM; Khalfin R; Szekely N; Cohen Y Carbohydr Polym; 2014 Nov; 112():125-33. PubMed ID: 25129726 [TBL] [Abstract][Full Text] [Related]
20. Prediction of the hydroxypropyl cellulose-poly(vinyl alcohol) ratio in aqueous solution containing papaverine hydrochloride in terms of drug loaded electrospun fiber formation. Kazsoki A; Szabó P; Zelkó R J Pharm Biomed Anal; 2017 May; 138():357-362. PubMed ID: 28259094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]