These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38814257)

  • 1. Ion molecule reactions in the HBr
    Plamper D; Vincent A; Fujioka K; Sun R; Weitzel KM
    Phys Chem Chem Phys; 2024 Jun; 26(23):16732-16746. PubMed ID: 38814257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-molecule reactions in the HBr
    Plamper D; Fujioka K; Schmidt S; Sun R; Weitzel KM
    Phys Chem Chem Phys; 2023 Jan; 25(3):2629-2640. PubMed ID: 36602406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Reactions in the HBr
    Schmidt S; Plamper D; Jekkel J; Weitzel KM
    J Phys Chem A; 2020 Oct; 124(41):8461-8468. PubMed ID: 32960596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational dependence of the proton-transfer reaction HBr+ + CO2 → HOCO+ + Br. II. Comparison of HBr+ (2Π(3/2)) and HBr+ (2Π(1/2)).
    Paetow L; Unger F; Beutel B; Weitzel KM
    J Chem Phys; 2010 Dec; 133(23):234301. PubMed ID: 21186865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational dependence of the proton-transfer reaction HBr+ + CO2-->HOCO+ + Br. I. Energy versus angular momentum effects.
    Paetow L; Unger F; Beichel W; Frenking G; Weitzel KM
    J Chem Phys; 2010 May; 132(17):174305. PubMed ID: 20459167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Study of the Dynamics of the HBr
    Luo Y; Fujioka K; Shoji A; Hase WL; Weitzel KM; Sun R
    J Phys Chem A; 2020 Nov; 124(44):9119-9127. PubMed ID: 33103436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-to-state quantum dynamics of the H + HBr reaction: competition between the abstraction and exchange reactions.
    Xie C; Jiang B; Xie D
    J Chem Phys; 2011 May; 134(18):184303. PubMed ID: 21568502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of dynamics for the abstraction reaction H' + HBr(v=0, j=0) --> H'H + Br.
    Zhang W; Cong S; Zhang C; Xu X; Chen M
    J Phys Chem A; 2009 Apr; 113(16):4192-7. PubMed ID: 19296627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects.
    Xu Y; Xiong B; Chang YC; Pan Y; Lo PK; Lau KC; Ng CY
    Phys Chem Chem Phys; 2017 Apr; 19(15):9778-9789. PubMed ID: 28352920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-reactions in the HCl(+) (DCl(+)) + HCl system: a state-selective investigation of the role of rotation.
    Uhlemann T; Wallauer J; Weitzel KM
    Phys Chem Chem Phys; 2015 Jul; 17(25):16454-61. PubMed ID: 26050552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical vibrational mode-specific dynamics studies for the HBr + C
    Yin C; Czakó G
    Phys Chem Chem Phys; 2023 Jan; 25(4):3083-3091. PubMed ID: 36620947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The translational, rotational, and vibrational energy effects on the chemical reactivity of water cation H2O+(X 2B1) in the collision with deuterium molecule D2.
    Xu Y; Xiong B; Chang YC; Ng CY
    J Chem Phys; 2013 Jul; 139(2):024203. PubMed ID: 23862936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Activation of Water Molecule by Collision with Spin-Orbit-State-Selected Vanadium Cation: Quantum-Electronic-State Control of Chemical Reactivity.
    Xu Y; Chang YC; Parziale M; Wannenmacher A; Ng CY
    J Phys Chem A; 2020 Oct; 124(43):8884-8896. PubMed ID: 33078936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Br(2P, 2P(3∕2)) + CH4 → HBr + CH3 reaction.
    Czakó G
    J Chem Phys; 2013 Apr; 138(13):134301. PubMed ID: 23574221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.
    Chang YC; Xu Y; Lu Z; Xu H; Ng CY
    J Chem Phys; 2012 Sep; 137(10):104202. PubMed ID: 22979852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time-dependent quantum dynamical study of the H + HBr reaction.
    Fu B; Zhang DH
    J Phys Chem A; 2007 Sep; 111(38):9516-21. PubMed ID: 17696330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guided-ion beam study of the reactions of Xe(+) and Xe(2+) with NH(3) at hyperthermal collision energies.
    Levandier DJ; Chiu YH
    J Chem Phys; 2010 Oct; 133(15):154304. PubMed ID: 20969383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-state-selected integral cross sections for the charge transfer collision of O
    Xiong B; Chang YC; Ng CY
    Phys Chem Chem Phys; 2017 Nov; 19(43):29057-29067. PubMed ID: 28920600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum electronic control on chemical activation of methane by collision with spin-orbit state selected vanadium cation.
    Ng CY; Xu Y; Chang YC; Wannenmacher A; Parziale M; Armentrout PB
    Phys Chem Chem Phys; 2021 Jan; 23(1):273-286. PubMed ID: 33336652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Potential Energy Profile of the HBr
    Fujioka K; Weitzel KM; Sun R
    J Phys Chem A; 2022 Mar; 126(9):1465-1474. PubMed ID: 35196015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.