These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38814555)

  • 1. Construction and application of a novel WGAN-CNN-based predicting approach for dust concentration at underground coal mine working faces.
    Zhou B; Qin B; Zhou Q; Sun D; Chen P; Yang K; Pan Q; Li H
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39271-39284. PubMed ID: 38814555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of road dust concentration in open-pit coal mines based on multivariate mixed model.
    Wang M; Yang Z; Tai C; Zhang F; Zhang Q; Shen K; Guo C
    PLoS One; 2023; 18(4):e0284815. PubMed ID: 37099504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of coal mine ventilation air flows.
    Su S; Chen H; Teakle P; Xue S
    J Environ Manage; 2008 Jan; 86(1):44-62. PubMed ID: 17239518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation on the status of respirable dust hazards in underground mines in China].
    Wang XT; Li JY; Bie FS
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2021 Jul; 39(7):527-530. PubMed ID: 34365765
    [No Abstract]   [Full Text] [Related]  

  • 5. Analyzing point cloud of coal mining process in much dust environment based on dynamic graph convolution neural network.
    Xing Z; Zhao S; Guo W; Guo X; Wang S; Li M; Wang Y; He H
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4044-4061. PubMed ID: 35963970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respirable coal mine dust in underground mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2019 Jun; 62(6):478-485. PubMed ID: 31033017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight monitoring and control system for coal mine safety using REST style.
    Cheng B; Cheng X; Chen J
    ISA Trans; 2015 Jan; 54():229-39. PubMed ID: 25109543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the 2.0 mg/m3 coal mine dust standard on underground environmental dust levels.
    Parobeck
    Am Ind Hyg Assoc J; 1975 Aug; 36(8):604-9. PubMed ID: 1227286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mass concentrations determined with personal respirable coal mine dust samplers operating at 1.2 liters per minute and the Casella 113A gravimetric sampler (MRE).
    Treaftis HN; Gero AJ; Kacsmar PM; Tomb TF
    Am Ind Hyg Assoc J; 1984 Dec; 45(12):826-32. PubMed ID: 6517028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on a Space-Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining.
    Cheng G; Wang Z; Shi B; Zhu W; Li T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fox guarding the chicken coop: monitoring exposure to respirable coal mine dust, 1969-2000.
    Weeks JL
    Am J Public Health; 2003 Aug; 93(8):1236-44. PubMed ID: 12893602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of low-cost particulate matter sensors for coal dust monitoring.
    Amoah NA; Xu G; Kumar AR; Wang Y
    Sci Total Environ; 2023 Feb; 859(Pt 2):160336. PubMed ID: 36414053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
    Patts JR; Barone TL
    J Occup Environ Hyg; 2017 May; 14(5):323-334. PubMed ID: 27792474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to forecast dust concentration in open pit mines by integrating meteorological parameters and production intensity.
    Wang Z; Zhou W; Jiskani IM; Yang Y; Yan J; Luo H; Han J
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):114591-114609. PubMed ID: 37861844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the respirable dust levels in the nation's underground and surface coal mining operations.
    Parobeck PS; Jankowski RA
    Am Ind Hyg Assoc J; 1979 Oct; 40(10):910-5. PubMed ID: 525618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; BrÄtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field investigation to measure airflow velocities of a ram dump car using circular routing at a Midwestern underground coal mine: a case study.
    Reed WR; Shahan M; Ross G; Singh K; Cross R; Grounds T
    Environ Monit Assess; 2019 Jul; 191(8):515. PubMed ID: 31346812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A coal mine and coal preparation plant coal dust workplace present situation investigation and analysis].
    Wang XW; Zhang YW; Sun YH; Xiu F; Wang YL
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2011 Apr; 29(4):306-8. PubMed ID: 21941788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of occupational exposures to respirable dust in underground coal mines.
    Onder M; Onder S
    Ind Health; 2009 Jan; 47(1):43-9. PubMed ID: 19218756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.