These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38814634)

  • 1. Chemical leukoderma: An insight of pathophysiology and contributing factors.
    Jangra S; Gulia H; Singh J; Dang AS; Giri SK; Singh G; Priya K; Kumar A
    Toxicol Ind Health; 2024 Aug; 40(8):479-495. PubMed ID: 38814634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the etiology of contact/occupational vitiligo.
    Boissy RE; Manga P
    Pigment Cell Res; 2004 Jun; 17(3):208-14. PubMed ID: 15140065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic review of occupational chemical leukoderma.
    Doolan BJ; Ross G
    Int J Dermatol; 2020 Mar; 59(3):e50-e52. PubMed ID: 31743421
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical-Induced Vitiligo.
    Harris JE
    Dermatol Clin; 2017 Apr; 35(2):151-161. PubMed ID: 28317525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Induction of occupational leucoderma and vitiligo. Can butylated hydroxytoluene induce vitiligo similarly to p-tert-butylphenol?].
    Broding HC; Monsé C; Brüning T; Fartasch M
    Hautarzt; 2011 Mar; 62(3):209-14. PubMed ID: 21373959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keratinocyte-derived IL-36γ plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes.
    Pyo JJ; Ahn S; Jin SH; An S; Lee E; Choi J; Shin JC; Choi H; Kim HJ; Choi D; Noh M
    Arch Toxicol; 2019 Aug; 93(8):2307-2320. PubMed ID: 31256213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss].
    Nishimaki-Mogami T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitiliginous lesions induced by amyl nitrite exposure.
    Vine K; Meulener M; Shieh S; Silverberg NB
    Cutis; 2013 Mar; 91(3):129-36. PubMed ID: 23617083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical leukoderma.
    O'Reilly KE; Patel U; Chu J; Patel R; Machler BC
    Dermatol Online J; 2011 Oct; 17(10):29. PubMed ID: 22031655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhododendrol-induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo.
    Inoue S; Katayama I; Suzuki T; Tanemura A; Ito S; Abe Y; Sumikawa Y; Yoshikawa M; Suzuki K; Yagami A; Masui Y; Ito A; Matsunaga K
    J Dermatol; 2021 Jul; 48(7):969-978. PubMed ID: 33951216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical leukoderma: what's new on etiopathological and clinical aspects?
    Ghosh S
    Indian J Dermatol; 2010; 55(3):255-8. PubMed ID: 21063518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometer is useful for assessing vitiligo and chemical leukoderma severity by quantifying color difference with surrounding normally pigmented skin.
    Hayashi M; Okamura K; Araki Y; Suzuki M; Tanaka T; Abe Y; Nakano S; Yoshizawa J; Hozumi Y; Inoie M; Suzuki T
    Skin Res Technol; 2018 May; 24(2):175-179. PubMed ID: 29057565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Leukoderma.
    Bonamonte D; Vestita M; Romita P; Filoni A; Foti C; Angelini G
    Dermatitis; 2016; 27(3):90-9. PubMed ID: 27172302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical leukoderma induced by dimethyl sulfate.
    Gozali MV; Zhang JA; Yi F; Zhou BR; Luo D
    An Bras Dermatol; 2016; 91(5 suppl 1):26-28. PubMed ID: 28300885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunological basis of melanoma-associated vitiligo-like depigmentation.
    González R; Torres-López E
    Actas Dermosifiliogr; 2014 Mar; 105(2):122-7. PubMed ID: 23146137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique system that can sensitively assess the risk of chemical leukoderma by using murine tail skin.
    Iida M; Tazaki A; Deng Y; Chen W; Yajima I; Kondo-Ida L; Hashimoto K; Ohgami N; Kato M
    Chemosphere; 2019 Nov; 235():713-718. PubMed ID: 31279121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma.
    Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T
    J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Leukoderma Associated with Methylphenidate Transdermal System: Data From the US Food and Drug Administration Adverse Event Reporting System.
    Cheng C; La Grenade L; Diak IL; Brinker A; Levin RL
    J Pediatr; 2017 Jan; 180():241-246. PubMed ID: 27745746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish as a new model for rhododendrol-induced leukoderma.
    Hayazaki M; Hatano O; Shimabayashi S; Akiyama T; Takemori H; Hamamoto A
    Pigment Cell Melanoma Res; 2021 Nov; 34(6):1029-1038. PubMed ID: 34310852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study.
    Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O
    J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.