These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38814729)

  • 1. Elucidating the Enzymatic Mechanism of Dihydrocoumarin Degradation: Insight into the Functional Evolution of Methyl-Parathion Hydrolase from QM/MM and MM MD Simulations.
    Fu Y; Yu J; Fan F; Wang B; Cao Z
    J Phys Chem B; 2024 Jun; 128(23):5567-5575. PubMed ID: 38814729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM and MM MD Simulations on the Pyrimidine-Specific Nucleoside Hydrolase: A Comprehensive Understanding of Enzymatic Hydrolysis of Uridine.
    Fan F; Chen N; Wang Y; Wu R; Cao Z
    J Phys Chem B; 2018 Jan; 122(3):1121-1131. PubMed ID: 29285933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase.
    Zhao C; Ling B; Dong L; Liu Y
    Proteins; 2017 Aug; 85(8):1518-1528. PubMed ID: 28486790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Catalytic Mechanism and the Substrate Specificity of an Engineered Gluten Hydrolase by QM/MM Molecular Dynamics and Free Energy Simulations.
    Yao J; Luo H; Wang X
    J Chem Inf Model; 2017 May; 57(5):1179-1186. PubMed ID: 28462999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Catalytic Activity of the Engineered Coiled-Coil Heptamer Mimicking the Hydrolase Enzymes: Insights from a Computational Study.
    Prejanò M; Romeo I; Russo N; Marino T
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.
    Ganguly A; Luong TQ; Brylski O; Dirkmann M; Möller D; Ebbinghaus S; Schulz F; Winter R; Sanchez-Garcia E; Thiel W
    J Phys Chem B; 2017 Jul; 121(26):6390-6398. PubMed ID: 28648071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Regulated Mechanisms for Degradation of Pesticides Paraoxon and Parathion by Phosphotriesterase: Insight from QM/MM and MD Simulations.
    Fu Y; Fan F; Wang B; Cao Z
    Chem Asian J; 2022 Jul; 17(14):e202200439. PubMed ID: 35586954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations.
    Fu Y; Zhang Y; Fan F; Wang B; Cao Z
    Phys Chem Chem Phys; 2022 Jan; 24(2):687-696. PubMed ID: 34927643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into specificity and catalytic mechanism of amphotericin B/nystatin thioesterase.
    Wang R; Tao W; Liu L; Li C; Bai L; Zhao YL; Shi T
    Proteins; 2021 May; 89(5):558-568. PubMed ID: 33389775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.
    Dutta D; Mishra S
    J Phys Chem B; 2017 Jul; 121(29):7075-7085. PubMed ID: 28664734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species.
    Bhat N; Nutho B; Hanpaibool C; Hadsadee S; Vangnai A; Rungrotmongkol T
    Proteins; 2024 Jan; 92(1):96-105. PubMed ID: 37646471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis Mechanism of Carbamate Methomyl by a Novel Esterase PestE: A QM/MM Approach.
    Wang Z; Zhang Q; Wang G; Wang W; Wang Q
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.
    Ng TK; Gahan LR; Schenk G; Ollis DL
    Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine.
    Chen X; Fang L; Liu J; Zhan CG
    Biochemistry; 2012 Feb; 51(6):1297-305. PubMed ID: 22304234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase.
    Yu J; Fu Y; Cao Z
    J Phys Chem B; 2023 Aug; 127(34):7462-7471. PubMed ID: 37584503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QM/MM molecular dynamics study of purine-specific nucleoside hydrolase.
    Wu R; Gong W; Liu T; Zhang Y; Cao Z
    J Phys Chem B; 2012 Feb; 116(6):1984-91. PubMed ID: 22257300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency.
    Xie J; Zhao Y; Zhang H; Liu Z; Lu Z
    Lett Appl Microbiol; 2014 Jan; 58(1):53-9. PubMed ID: 24010722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations.
    Jäckering A; van der Kamp M; Strodel B; Zinovjev K
    J Chem Inf Model; 2024 Oct; 64(19):7544-7554. PubMed ID: 39344272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4.
    Chen X; Zhao X; Xiong Y; Liu J; Zhan CG
    J Phys Chem B; 2011 Oct; 115(42):12208-19. PubMed ID: 21973014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Origins of Changing Product Specificity Properties of Arginine Methyltransferase PRMT7 by the E181D and E181D/Q329A Mutations through QM/MM MD and Free-Energy Simulations.
    Ren WS; Rahman A; Jiang KB; Deng H; Zhao YY; Zhang WJ; Liu K; Qian P; Guo H
    J Chem Theory Comput; 2022 Apr; 18(4):2631-2641. PubMed ID: 35316052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.