These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38815169)

  • 1. Nonlinear Elasticity of Blood Vessels and Vascular Grafts.
    Wang X; Li K; Yuan Y; Zhang N; Zou Z; Wang Y; Yan S; Li X; Zhao P; Li Q
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3631-3654. PubMed ID: 38815169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.
    Bagnasco DS; Ballarin FM; Cymberknop LJ; Balay G; Negreira C; Abraham GA; Armentano RL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():446-54. PubMed ID: 25491850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.
    Obiweluozor FO; Emechebe GA; Kim DW; Cho HJ; Park CH; Kim CS; Jeong IS
    Cardiovasc Eng Technol; 2020 Oct; 11(5):495-521. PubMed ID: 32812139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The challenge of small diameter vascular grafts.
    Burkel WE
    Med Prog Technol; 1988-1989; 14(3-4):165-75. PubMed ID: 2978590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities.
    Wang D; Xu Y; Li Q; Turng LS
    J Mater Chem B; 2020 Mar; 8(9):1801-1822. PubMed ID: 32048689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and degradation properties of small-diameter vascular grafts in an in vitro biomimetic environment.
    Li X; Zhao H
    J Biomater Appl; 2019 Mar; 33(8):1017-1034. PubMed ID: 30636493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization.
    Guo HF; Dai WW; Qian DH; Qin ZX; Lei Y; Hou XY; Wen C
    Acta Biomater; 2017 May; 54():107-116. PubMed ID: 28238915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of diameter ratio between vascular substitute and blood vessel on anastomosis.
    Jian CY; Yokobori AT
    Biomed Mater Eng; 1999; 9(4):219-31. PubMed ID: 10674176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts.
    Li S; Yang L; Zhao Z; Yang X; Lv H
    Acta Biomater; 2024 Mar; 176():234-249. PubMed ID: 38218359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and performance evaluation of a novel elastic bacterial nanocellulose/polyurethane small caliber artificial blood vessels.
    Li G; Bao L; Hu G; Chen L; Zhou X; Hong FF
    Int J Biol Macromol; 2024 May; 268(Pt 2):131685. PubMed ID: 38641268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute.
    Weber C; Reinhardt S; Eghbalzadeh K; Wacker M; Guschlbauer M; Maul A; Sterner-Kock A; Wahlers T; Wippermann J; Scherner M
    J Vasc Surg; 2018 Dec; 68(6S):177S-187S.e1. PubMed ID: 29248244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autologous blood vessels engineered from peripheral blood sample.
    Aper T; Schmidt A; Duchrow M; Bruch HP
    Eur J Vasc Endovasc Surg; 2007 Jan; 33(1):33-9. PubMed ID: 17070080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of small diameter arteries using decellularized vascular scaffolds.
    Nagaoka Y; Yamada H; Kimura T; Kishida A; Fujisato T; Takakuda K
    J Med Dent Sci; 2014 Mar; 61(1):33-40. PubMed ID: 24658963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications.
    Khodadoust M; Mohebbi-Kalhori D; Jirofti N
    Cardiovasc Eng Technol; 2018 Mar; 9(1):73-83. PubMed ID: 29196952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties.
    Mi HY; Jiang Y; Jing X; Enriquez E; Li H; Li Q; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():241-249. PubMed ID: 30813024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
    Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA
    Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ evolution of the mechanical properties of stretchable and non-stretchable ePTFE vascular grafts and adjacent native vessels.
    Famaey N; Verhoeven J; Jacobs S; Pettinari M; Meyns B
    Int J Artif Organs; 2014 Dec; 37(12):900-10. PubMed ID: 25450323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.