These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38815275)

  • 1. H and CO Co-Induced Roughening of Cu Surface in CO
    Zhang Z; Gee W; Sautet P; Alexandrova AN
    J Am Chem Soc; 2024 Jun; 146(23):16119-16127. PubMed ID: 38815275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-Induced Restructuring of a Cu(100) Electrode in Electroreduction Conditions.
    Zhang Z; Wei Z; Sautet P; Alexandrova AN
    J Am Chem Soc; 2022 Oct; 144(42):19284-19293. PubMed ID: 36227161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restructuring and Activation of Cu(111) under Electrocatalytic Reduction Conditions.
    Cheng D; Wei Z; Zhang Z; Broekmann P; Alexandrova AN; Sautet P
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202218575. PubMed ID: 36922903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H-Induced Restructuring on Cu(111) Triggers CO Electroreduction in an Acidic Electrolyte.
    Cheng D; Alexandrova AN; Sautet P
    J Phys Chem Lett; 2024 Feb; 15(4):1056-1061. PubMed ID: 38254259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO
    Grosse P; Gao D; Scholten F; Sinev I; Mistry H; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2018 May; 57(21):6192-6197. PubMed ID: 29578622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical insights into the effect of the overpotential on CO electroreduction mechanisms on Cu(111): regulation and application of electrode potentials from a CO coverage-dependent electrochemical model.
    Ou L; Chen J
    Phys Chem Chem Phys; 2019 Dec; 22(1):62-73. PubMed ID: 31793953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Effect of *CO Coverage on C-C Coupling toward CO
    Kong X; Zhao J; Ke J; Wang C; Li S; Si R; Liu B; Zeng J; Geng Z
    Nano Lett; 2022 May; 22(9):3801-3808. PubMed ID: 35467883
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Chen R; Zhao J; Li Y; Cui Y; Lu YR; Hung SF; Wang S; Wang W; Huo G; Zhao Y; Liu W; Wang J; Xiao H; Li X; Huang Y; Liu B
    J Am Chem Soc; 2023 Sep; 145(37):20683-20691. PubMed ID: 37683296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-Dependent Competitive Electroreduction of CO
    Ou L; He Z
    ACS Omega; 2020 Jun; 5(22):12735-12744. PubMed ID: 32548457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction.
    Montoya JH; Shi C; Chan K; Nørskov JK
    J Phys Chem Lett; 2015 Jun; 6(11):2032-7. PubMed ID: 26266498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under
    Phan TH; Banjac K; Cometto FP; Dattila F; García-Muelas R; Raaijman SJ; Ye C; Koper MTM; López N; Lingenfelder M
    Nano Lett; 2021 Mar; 21(5):2059-2065. PubMed ID: 33617268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Investigation of the Adsorbate and Potential-Induced Stability of Cu Facets During Electrochemical CO
    Yu H; Govindarajan N; Weitzner SE; Serra-Maia RF; Akhade SA; Varley JB
    Chemphyschem; 2024 May; 25(10):e202300959. PubMed ID: 38409629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Approaches for CO
    Overa S; Ko BH; Zhao Y; Jiao F
    Acc Chem Res; 2022 Mar; 55(5):638-648. PubMed ID: 35041403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoting CO
    Wang Y; Liu Y; Cao P; Chen S; Su Y; Quan X
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38604119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential-Dependent Morphology of Copper Catalysts During CO
    Simon GH; Kley CS; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2561-2568. PubMed ID: 33035401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the role of Cu
    Sun L; Han J; Ge Q; Zhu X; Wang H
    RSC Adv; 2022 Jun; 12(30):19394-19401. PubMed ID: 35865572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-Stoichiometric Restructuring and Sliding Dynamics of Hexagonal Boron Nitride Edges in Conditions of Oxidative Dehydrogenation of Propane.
    Zhang Z; Hermans I; Alexandrova AN
    J Am Chem Soc; 2023 Aug; 145(31):17265-17273. PubMed ID: 37506379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.