These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38815376)

  • 1. Spontaneous nanotube formation of an asymmetric glycolipid.
    Villanueva ME; Bar L; Redondo-Morata L; Namdar P; Ruysschaert JM; Pabst G; Vandier C; María Bouchet A; Losada-Pérez P
    J Colloid Interface Sci; 2024 Oct; 671():410-422. PubMed ID: 38815376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of self-assembled glycolipid nanotubes with bilayer sheets.
    Yoshida K; Minamikawa H; Kamiya S; Shimizu T; Isoda S
    J Nanosci Nanotechnol; 2007 Mar; 7(3):960-4. PubMed ID: 17450859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating Multi-Component Lipid Nanotube Networks Using the Gliding Kinesin Motility Assay.
    Imam ZI; Bachand GD
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of Molecular Asymmetry during the Hierarchical Self-Assembly of Foldable Azobenzene Dyads into Nanotoroids and Nanotubes.
    Saito T; Kajitani T; Yagai S
    J Am Chem Soc; 2023 Jan; 145(1):443-454. PubMed ID: 36574732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freely drawn single lipid nanotube patterns.
    Sugihara K; Rustom A; Spatz JP
    Soft Matter; 2015 Mar; 11(10):2029-35. PubMed ID: 25626419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels.
    Dutt M; Kuksenok O; Nayhouse MJ; Little SR; Balazs AC
    ACS Nano; 2011 Jun; 5(6):4769-82. PubMed ID: 21604769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid nanotube formation using space-regulated electric field above interdigitated electrodes.
    Bi H; Fu D; Wang L; Han X
    ACS Nano; 2014 Apr; 8(4):3961-9. PubMed ID: 24669822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid nanotubes: Formation and applications.
    Wang Y; Zhang J; Gao H; Sun Y; Wang L
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112362. PubMed ID: 35101821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled arrays of peptide nanotubes by vapour deposition.
    Adler-Abramovich L; Aronov D; Beker P; Yevnin M; Stempler S; Buzhansky L; Rosenman G; Gazit E
    Nat Nanotechnol; 2009 Dec; 4(12):849-54. PubMed ID: 19893524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation.
    Park C; Lee IH; Lee S; Song Y; Rhue M; Kim C
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1199-203. PubMed ID: 16423900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment of glycolipid nanotubes on a planar glass substrate using a two-step microextrusion technique.
    Guo Y; Yui H; Fukagawa A; Kamiya S; Masuda M; Ito K; Shimizu T
    J Nanosci Nanotechnol; 2006 May; 6(5):1464-6. PubMed ID: 16792382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid bilayers covalently anchored to carbon nanotubes.
    Dayani Y; Malmstadt N
    Langmuir; 2012 May; 28(21):8174-82. PubMed ID: 22568448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled patterning of aligned self-assembled peptide nanotubes.
    Reches M; Gazit E
    Nat Nanotechnol; 2006 Dec; 1(3):195-200. PubMed ID: 18654186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABC triblock terpolymer self-assembled core-shell-corona nanotubes with high aspect ratios.
    Wang L; Huang H; He T
    Macromol Rapid Commun; 2014 Aug; 35(16):1387-96. PubMed ID: 24789700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Connection between Vesicles and Nanotubes in Single-Molecule Lipid Membranes Driven by Head-Tail Interactions.
    Baccile N; Lorthioir C; Ba AA; Le Griel P; Pérez J; Hermida-Merino D; Soetaert W; Roelants SLKW
    Langmuir; 2022 Dec; 38(48):14574-14587. PubMed ID: 36410028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of chiral nanotubes by the novel anthraquinone containing-achiral molecule.
    Unsal H; Aydogan N
    J Colloid Interface Sci; 2013 Mar; 394():301-11. PubMed ID: 23312581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides.
    Abosheasha MA; Itagaki T; Ito Y; Ueda M
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.