BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38815382)

  • 1. Manipulating heterointerface to boost formation and desorption of intermediates for highly efficient alkaline hydrogen evolution.
    Li R; Liu F; Xu Q; Yu J; Qi K
    J Colloid Interface Sci; 2024 Oct; 671():469-476. PubMed ID: 38815382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiostatic electrodeposition of Ni-Se-Cu on nickel foam as an electrocatalyst for hydrogen evolution reaction.
    Gao Y; Wu Y; He H; Tan W
    J Colloid Interface Sci; 2020 Oct; 578():555-564. PubMed ID: 32544627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Superior Alkaline Hydrogen Evolution Electrocatalyst by Engineering Dual Active Sites for Water Dissociation and Hydrogen Desorption.
    Chen J; Jin Q; Li Y; Li Y; Cui H; Wang C
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38771-38778. PubMed ID: 31566359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni(OH)
    Kim D; Park J; Lee J; Zhang Z; Yong K
    ChemSusChem; 2018 Oct; 11(20):3618-3624. PubMed ID: 30137693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistically Coupled Ni/CeO
    Ji M; Yaseen W; Mao H; Xia C; Xu Y; Meng S; Xie J; Xie M
    Inorg Chem; 2023 Aug; 62(31):12383-12391. PubMed ID: 37498974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media.
    Yang M; Jiao L; Dong H; Zhou L; Teng C; Yan D; Ye TN; Chen X; Liu Y; Jiang HL
    Sci Bull (Beijing); 2021 Feb; 66(3):257-264. PubMed ID: 36654331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Synergy of Chemical Hydroxylation and the Physical Heterointerface upon Improving the Hydrogen Evolution Kinetics.
    Liu Y; Liu X; Wang X; Ning H; Yang T; Yu J; Kumar A; Luo Y; Wang H; Wang L; Lee J; Jadhav AR; Hu H; Wu M; Kim MG; Lee H
    ACS Nano; 2021 Sep; 15(9):15017-15026. PubMed ID: 34405681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Doped Carbon Shells Encapsulated Ru-Ni Nanoalloys for Efficient Hydrogen Evolution Reaction.
    Wang S; Li Z; Shen T; Wang D
    ChemSusChem; 2023 Apr; 16(8):e202202128. PubMed ID: 36715007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafine Pt-based catalyst decorated with oxygenophilic Ni-sites accelerating alkaline H
    Chen L; Kang L; Cai D; Geng S; Liu Y; Chen J; Song S; Wang Y
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1715-1724. PubMed ID: 37499627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiS
    Xia L; Jiang W; Hartmann H; Mayer J; Lehnert W; Shviro M
    ACS Appl Mater Interfaces; 2022 May; 14(17):19397-19408. PubMed ID: 35452215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni/Mo Bimetallic-Oxide-Derived Heterointerface-Rich Sulfide Nanosheets with Co-Doping for Efficient Alkaline Hydrogen Evolution by Boosting Volmer Reaction.
    Zhang L; Zheng Y; Wang J; Geng Y; Zhang B; He J; Xue J; Frauenheim T; Li M
    Small; 2021 Mar; 17(10):e2006730. PubMed ID: 33590691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quaternary heterojunction nanoflower for significantly enhanced electrochemical water splitting.
    Chen H; Liu W; Li J; Chen L; Li G; Zhao W; Tao K; Han L
    Dalton Trans; 2023 Sep; 52(36):12668-12676. PubMed ID: 37646195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickel-Based Alloys for Highly Efficient Alkaline Hydrogen Evolution.
    Wang J; Xin S; Xiao Y; Zhang Z; Li Z; Zhang W; Li C; Bao R; Peng J; Yi J; Chou S
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202202518. PubMed ID: 35441413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Coupled NiS
    Lin Z; Li K; Tong Y; Wu W; Cheng X; Wang H; Chen P; Diao P
    ChemSusChem; 2023 Jan; 16(2):e202201985. PubMed ID: 36394154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Oxygen Evolution Reaction Performance on NiS
    Duan F; Huang Y; Han T; Jia B; Zhou X; Zhou Y; Yang Y; Wei X; Ke G; He H
    Inorg Chem; 2023 Jul; 62(30):12119-12129. PubMed ID: 37471711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Electrodeposition of Ni-Cu-P Dendrite Nanotube Films with Enhanced Hydrogen Evolution Reaction Activity and Durability.
    Cao M; Xue Z; Niu J; Qin J; Sawangphruk M; Zhang X; Liu R
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35224-35233. PubMed ID: 30231609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO
    Yao Y; Hu E; Wang Z; Cui Y; Qian G
    ACS Omega; 2022 Jan; 7(2):2244-2251. PubMed ID: 35071913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Ni(OH)
    Chen L; Zhang J; Ren X; Ge R; Teng W; Sun X; Li X
    Nanoscale; 2017 Nov; 9(43):16632-16637. PubMed ID: 29086782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media.
    Zhang Y; Yun S; Sun M; Wang X; Zhang L; Dang J; Yang C; Yang J; Dang C; Yuan S
    J Colloid Interface Sci; 2021 Dec; 604():441-457. PubMed ID: 34273781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Nanotubular Copper-Doped Nickel Catalysts for Hydrogen Evolution Reactions.
    Sun Q; Dong Y; Wang Z; Yin S; Zhao C
    Small; 2018 Apr; 14(14):e1704137. PubMed ID: 29484816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.