These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 38815596)
1. Harnessing oriented arrangement of collagen fibers by 3D printing for enhancing mechanical and osteogenic properties of mineralized collagen scaffolds. Zhou Y; Lian XJ; Lu Y; Zhu Q; Fu T; Feng HN; Lei Q; Huang D Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38815596 [TBL] [Abstract][Full Text] [Related]
2. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds]. Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303 [TBL] [Abstract][Full Text] [Related]
3. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910 [TBL] [Abstract][Full Text] [Related]
4. Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration. Ma L; Wang X; Zhao N; Zhu Y; Qiu Z; Li Q; Zhou Y; Lin Z; Li X; Zeng X; Xia H; Zhong S; Zhang Y; Wang Y; Mao C ACS Appl Mater Interfaces; 2018 Dec; 10(49):42146-42154. PubMed ID: 30507136 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
6. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
8. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. Luo Y; Chen S; Shi Y; Ma J Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422 [TBL] [Abstract][Full Text] [Related]
9. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization. Liu IH; Chang SH; Lin HY Biomed Mater; 2015 May; 10(3):035004. PubMed ID: 25970802 [TBL] [Abstract][Full Text] [Related]
10. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
11. Engineering collagen fiber templates with oriented nanoarchitecture and concerns on osteoblast behaviors. Luo X; Zhang S; Luo B; Li H Int J Biol Macromol; 2021 Aug; 185():77-86. PubMed ID: 34139244 [TBL] [Abstract][Full Text] [Related]
12. Protocol for Cell Colonization and Comprehensive Monitoring of Osteogenic Differentiation in 3D Scaffolds Using Biochemical Assays and Multiphoton Imaging. Sommer KP; Krolinski A; Mirkhalaf M; Zreiqat H; Friedrich O; Vielreicher M Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769321 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Cardenas Turner J; Collins G; Blaber EA; Almeida EAC; Arinzeh TL J Tissue Eng Regen Med; 2020 Jan; 14(1):173-185. PubMed ID: 31670902 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
15. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1). Suphasiriroj W; Yotnuengnit P; Surarit R; Pichyangkura R J Mater Sci Mater Med; 2009 Jan; 20(1):309-20. PubMed ID: 18791666 [TBL] [Abstract][Full Text] [Related]
16. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
17. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
18. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
19. Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide. Li M; Zhang X; Jia W; Wang Q; Liu Y; Wang X; Wang C; Jiang J; Gu G; Guo Z; Chen Z Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():110008. PubMed ID: 31499961 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]