These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38815611)

  • 21. Self-Catalyzed InSb/InAs Quantum Dot Nanowires.
    Arif O; Zannier V; Rossi F; Ercolani D; Beltram F; Sorba L
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33450840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors.
    Liu Y; Fang Y; Yang D; Pi X; Wang P
    J Phys Condens Matter; 2022 Mar; 34(18):. PubMed ID: 35134786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic Transport and Quantum Phenomena in Nanowires.
    Badawy G; Bakkers EPAM
    Chem Rev; 2024 Mar; 124(5):2419-2440. PubMed ID: 38394689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bottom-Up Grown 2D InSb Nanostructures.
    Gazibegovic S; Badawy G; Buckers TLJ; Leubner P; Shen J; de Vries FK; Koelling S; Kouwenhoven LP; Verheijen MA; Bakkers EPAM
    Adv Mater; 2019 Apr; 31(14):e1808181. PubMed ID: 30779385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Giant, level-dependent g factors in InSb nanowire quantum dots.
    Nilsson HA; Caroff P; Thelander C; Larsson M; Wagner JB; Wernersson LE; Samuelson L; Xu HQ
    Nano Lett; 2009 Sep; 9(9):3151-6. PubMed ID: 19736971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal scanning probe and laser lithography for patterning nanowire based quantum devices.
    Shani L; Chaaban J; Nilson A; Clerc E; Menning G; Riggert C; Lueb P; Rossi M; Badawy G; Bakkers EPAM; Pribiag VS
    Nanotechnology; 2024 Apr; 35(25):. PubMed ID: 38467064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved quality of InSb-on-insulator microstructures by flash annealing into melt.
    Menon H; Södergren L; Athle R; Johansson J; Steer M; Thayne I; Borg M
    Nanotechnology; 2021 Apr; 32(16):165602. PubMed ID: 33361572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of Moment-Dependent and Field-Driven Unidirectional Magnetoresistance in CoFeB/InSb/CdTe Heterostructures.
    Liu J; Liao L; Rong B; Wu Y; Ruan H; Zhang Y; Zhi Z; Liu X; Huang P; Yao S; Cai X; Tang C; Yao Q; Sun L; Yang Y; Yu G; Che R; Kou X
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45687-45694. PubMed ID: 39162076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth mechanism and self-polarization of bilayer InSb (111) on Bi (001) substrate.
    Wang B; Wang J; Niu X
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics.
    Kuo CH; Wu JM; Lin SJ
    Nanoscale Res Lett; 2013 Feb; 8(1):69. PubMed ID: 23399075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Efficient Electric-Field Control of Giant Rashba Spin-Orbit Coupling in Lattice-Matched InSb/CdTe Heterostructures.
    Zhang Y; Xue F; Tang C; Li J; Liao L; Li L; Liu X; Yang Y; Song C; Kou X
    ACS Nano; 2020 Dec; 14(12):17396-17404. PubMed ID: 33301682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors.
    Yang ZX; Han N; Wang F; Cheung HY; Shi X; Yip S; Hung T; Lee MH; Wong CY; Ho JC
    Nanoscale; 2013 Oct; 5(20):9671-6. PubMed ID: 24056889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of an Overshoot Layer on the Morphological, Structural, Strain, and Transport Properties of InAs Quantum Wells.
    Arif O; Canal L; Ferrari E; Ferrari C; Lazzarini L; Nasi L; Paghi A; Heun S; Sorba L
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multilayer Epitaxial Heterostructures with Multi-Component III-V:Fe Magnetic Semiconductors.
    Kudrin AV; Lesnikov VP; Kriukov RN; Danilov YA; Dorokhin MV; Yakovleva AA; Tabachkova NY; Sobolev NA
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spin Transport in Ferromagnet-InSb Nanowire Quantum Devices.
    Yang Z; Heischmidt B; Gazibegovic S; Badawy G; Car D; Crowell PA; Bakkers EPAM; Pribiag VS
    Nano Lett; 2020 May; 20(5):3232-3239. PubMed ID: 32338518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurements of anisotropic g-factors for electrons in InSb nanowire quantum dots.
    Mu J; Huang S; Wang JY; Huang GY; Wang X; Xu HQ
    Nanotechnology; 2021 Jan; 32(2):020002. PubMed ID: 32987368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single and double hole quantum dots in strained Ge/SiGe quantum wells.
    Hardy WJ; Harris CT; Su YH; Chuang Y; Moussa J; Maurer LN; Li JY; Lu TM; Luhman DR
    Nanotechnology; 2019 May; 30(21):215202. PubMed ID: 30869078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hard oxide semiconductor with a direct and narrow bandgap and switchable p-n electrical conduction.
    Ovsyannikov SV; Karkin AE; Morozova NV; Shchennikov VV; Bykova E; Abakumov AM; Tsirlin AA; Glazyrin KV; Dubrovinsky L
    Adv Mater; 2014 Dec; 26(48):8185-91. PubMed ID: 25348375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors.
    Peng L; Wang Y; Ren Y; Wang Z; Cao P; Konstantatos G
    ACS Nano; 2024 Feb; 18(6):5113-5121. PubMed ID: 38305195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.