These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38815775)

  • 21. Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents.
    Bianchera A; Buttini F; Bettini R
    Expert Opin Ther Pat; 2020 Dec; 30(12):983-1000. PubMed ID: 33078643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii.
    Hetta HF; Al-Kadmy IMS; Khazaal SS; Abbas S; Suhail A; El-Mokhtar MA; Ellah NHA; Ahmed EA; Abd-Ellatief RB; El-Masry EA; Batiha GE; Elkady AA; Mohamed NA; Algammal AM
    Sci Rep; 2021 May; 11(1):10751. PubMed ID: 34031472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape.
    Alabresm A; Chandler SL; Benicewicz BC; Decho AW
    Bioconjug Chem; 2021 Aug; 32(8):1411-1430. PubMed ID: 34319073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.
    Penesyan A; Gillings M; Paulsen IT
    Molecules; 2015 Mar; 20(4):5286-98. PubMed ID: 25812150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic pathways and antimicrobial peptide resistance in bacteria.
    Elbediwi M; Rolff J
    J Antimicrob Chemother; 2024 Jul; 79(7):1473-1483. PubMed ID: 38742645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens.
    Altaf M; Manoharadas S; Zeyad MT
    Microsc Res Tech; 2021 Aug; 84(8):1638-1648. PubMed ID: 33559164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections.
    Zhang J; Liu M; Guo H; Gao S; Hu Y; Zeng G; Yang D
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(3):e1968. PubMed ID: 38772565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR.
    Moo CL; Yang SK; Yusoff K; Ajat M; Thomas W; Abushelaibi A; Lim SH; Lai KS
    Curr Drug Discov Technol; 2020; 17(4):430-447. PubMed ID: 30836923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Approaches to the Control of Oral Microbial Biofilms.
    Kuang X; Chen V; Xu X
    Biomed Res Int; 2018; 2018():6498932. PubMed ID: 30687755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.
    Wong JP; DiTullio P; Parkinson S
    Future Microbiol; 2015; 10(11):1751-8. PubMed ID: 26597426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options.
    M Campos JC; Antunes LC; Ferreira RB
    Future Microbiol; 2020 May; 15():649-677. PubMed ID: 32495702
    [No Abstract]   [Full Text] [Related]  

  • 32. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials.
    Anyaegbunam NJ; Mba IE; Ige AO; Ogunrinola TE; Emenike OK; Uwazie CK; Ujah PN; Oni AJ; Anyaegbunam ZKG; Olawade DB
    World J Microbiol Biotechnol; 2024 Feb; 40(3):102. PubMed ID: 38366174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance.
    Natan M; Banin E
    FEMS Microbiol Rev; 2017 May; 41(3):302-322. PubMed ID: 28419240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current progress and prospects of organic nanoparticles against bacterial biofilm.
    Li X; Chen D; Xie S
    Adv Colloid Interface Sci; 2021 Aug; 294():102475. PubMed ID: 34280601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomaterials for the Treatment of Bacterial Biofilms.
    Wang LS; Gupta A; Rotello VM
    ACS Infect Dis; 2016 Jan; 2(1):3-4. PubMed ID: 27622944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections.
    Xu Q; Hu X; Wang Y
    Mol Biotechnol; 2021 Dec; 63(12):1103-1124. PubMed ID: 34309796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases.
    Qi M; Chi M; Sun X; Xie X; Weir MD; Oates TW; Zhou Y; Wang L; Bai Y; Xu HH
    Int J Nanomedicine; 2019; 14():6937-6956. PubMed ID: 31695368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.
    Borges A; Saavedra MJ; Simões M
    Curr Med Chem; 2015; 22(21):2590-614. PubMed ID: 26028341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in micro/nanomotors for antibacterial applications.
    Wang W; Luo H; Wang H
    J Mater Chem B; 2024 May; 12(21):5000-5023. PubMed ID: 38712692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens.
    Qais FA; Shafiq A; Ahmad I; Husain FM; Khan RA; Hassan I
    Microb Pathog; 2020 Jul; 144():104172. PubMed ID: 32224208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.