These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38815775)

  • 41. Recent advances in micro/nanomotors for antibacterial applications.
    Wang W; Luo H; Wang H
    J Mater Chem B; 2024 May; 12(21):5000-5023. PubMed ID: 38712692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens.
    Qais FA; Shafiq A; Ahmad I; Husain FM; Khan RA; Hassan I
    Microb Pathog; 2020 Jul; 144():104172. PubMed ID: 32224208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy.
    Mohanta YK; Chakrabartty I; Mishra AK; Chopra H; Mahanta S; Avula SK; Patowary K; Ahmed R; Mishra B; Mohanta TK; Saravanan M; Sharma N
    Front Microbiol; 2022; 13():1028086. PubMed ID: 36938129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition.
    Fleitas Martínez O; Cardoso MH; Ribeiro SM; Franco OL
    Front Cell Infect Microbiol; 2019; 9():74. PubMed ID: 31001485
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections.
    Gallo G; Schillaci D
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5357-5366. PubMed ID: 34184105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms.
    Jorge P; Magalhães AP; Grainha T; Alves D; Sousa AM; Lopes SP; Pereira MO
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31305896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials.
    Zhang J; Tang W; Zhang X; Song Z; Tong T
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631327
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review.
    Das P; Karankar VS
    J Microbiol Methods; 2019 Dec; 167():105766. PubMed ID: 31706910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal nanobullets for multidrug resistant bacteria and biofilms.
    Chen CW; Hsu CY; Lai SM; Syu WJ; Wang TY; Lai PS
    Adv Drug Deliv Rev; 2014 Nov; 78():88-104. PubMed ID: 25138828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance.
    Joshi AS; Singh P; Mijakovic I
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection.
    Fan X; Yang F; Nie C; Ma L; Cheng C; Haag R
    Adv Mater; 2021 Aug; 33(33):e2100637. PubMed ID: 34216401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria.
    Hayat S; Muzammil S; Rasool MH; Nisar Z; Hussain SZ; Sabri AN; Jamil S
    Microbiol Immunol; 2018 Apr; 62(4):211-220. PubMed ID: 29405384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives.
    Hetta HF; Ramadan YN; Al-Harbi AI; A Ahmed E; Battah B; Abd Ellah NH; Zanetti S; Donadu MG
    Biomedicines; 2023 Jan; 11(2):. PubMed ID: 36830949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.
    Roy R; Tiwari M; Donelli G; Tiwari V
    Virulence; 2018 Jan; 9(1):522-554. PubMed ID: 28362216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes.
    Munir MU; Ahmed A; Usman M; Salman S
    Int J Nanomedicine; 2020; 15():7329-7358. PubMed ID: 33116477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms.
    Asghar S; Khan IU; Salman S; Khalid SH; Ashfaq R; Vandamme TF
    Adv Drug Deliv Rev; 2021 Dec; 179():114019. PubMed ID: 34699940
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biofilm-specific antibiotic resistance.
    Mah TF
    Future Microbiol; 2012 Sep; 7(9):1061-72. PubMed ID: 22953707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of magnetite hybrid nanocomplexes to eliminate bacteria and enhance biofilm disruption.
    Zhang C; Du C; Liao JY; Gu Y; Gong Y; Pei J; Gu H; Yin D; Gao L; Pan Y
    Biomater Sci; 2019 Jun; 7(7):2833-2840. PubMed ID: 31066733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption.
    Vidallon MLP; Teo BM
    Chem Commun (Camb); 2020 Nov; 56(90):13907-13917. PubMed ID: 33146161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanomaterial-based treatments for medical device-associated infections.
    Tran N; Tran PA
    Chemphyschem; 2012 Jul; 13(10):2481-94. PubMed ID: 22517627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.