These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38816122)

  • 1. Structural studies of catalytic peptides using molecular dynamics simulations.
    Rathee P; Moorkkannur SN; Prabhakar R
    Methods Enzymol; 2024; 697():151-180. PubMed ID: 38816122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating chemical reactions promoted by self-assembled peptides with catalytic properties.
    Yang Y; Wang X; Dong H
    Methods Enzymol; 2024; 697():321-343. PubMed ID: 38816128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme.
    Mlýnský V; Banás P; Hollas D; Réblová K; Walter NG; Sponer J; Otyepka M
    J Phys Chem B; 2010 May; 114(19):6642-52. PubMed ID: 20420375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Ions Can Modulate the Self-Assembly and Activity of Catalytic Peptide Amyloids.
    Duran-Meza E; Araya-Secchi R; Romero-Hasler P; Soto-Bustamante EA; Castro-Fernandez V; Castillo-Caceres C; Monasterio O; Diaz-Espinoza R
    Langmuir; 2024 Mar; 40(12):6094-6106. PubMed ID: 38470353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex.
    Dutta S; Corni S; Brancolini G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Simulations Guidelines for Biological Nanomaterials: From Peptides to Membranes.
    Marzuoli I; Fraternali F
    Methods Mol Biol; 2021; 2208():81-100. PubMed ID: 32856257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins.
    Rahman MU; Rehman AU; Liu H; Chen HF
    J Chem Inf Model; 2020 Oct; 60(10):4912-4923. PubMed ID: 32816485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.
    Frembgen-Kesner T; Andrews CT; Li S; Ngo NA; Shubert SA; Jain A; Olayiwola OJ; Weishaar MR; Elcock AH
    J Chem Theory Comput; 2015 May; 11(5):2341-54. PubMed ID: 26574429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly.
    Chen CH; Melo MC; Berglund N; Khan A; de la Fuente-Nunez C; Ulmschneider JP; Ulmschneider MB
    Curr Opin Struct Biol; 2020 Apr; 61():160-166. PubMed ID: 32006812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure dependence of amyloid-β(1-40) on simulation techniques and force field parameters.
    Caliskan M; Mandaci SY; Uversky VN; Coskuner-Weber O
    Chem Biol Drug Des; 2021 May; 97(5):1100-1108. PubMed ID: 33580600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study.
    Sun Y; Qian Z; Guo C; Wei G
    Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.