BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38816134)

  • 1. Assembly and catalytic activity of short prion-inspired peptides.
    Garcia-Pardo J; Fornt-Suñé M; Ventura S
    Methods Enzymol; 2024; 697():499-526. PubMed ID: 38816134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes.
    Navarro S; Díaz-Caballero M; Peccati F; Roldán-Martín L; Sodupe M; Ventura S
    ACS Nano; 2023 Sep; 17(17):16968-16979. PubMed ID: 37647583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal co-factors to enhance catalytic activity of short prion-derived peptide sequences.
    Mavlankar NA; Maulik A; Pal A
    Methods Enzymol; 2024; 697():473-498. PubMed ID: 38816133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimalist Prion-Inspired Polar Self-Assembling Peptides.
    Díaz-Caballero M; Navarro S; Fuentes I; Teixidor F; Ventura S
    ACS Nano; 2018 Jun; 12(6):5394-5407. PubMed ID: 29812908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity.
    Tiwari OS; Gazit E
    Methods Enzymol; 2024; 697():181-209. PubMed ID: 38816123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250).
    Yau J; Sharpe S
    J Struct Biol; 2012 Nov; 180(2):290-302. PubMed ID: 22929126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils.
    Wang W; Navarro S; Azizyan RA; Baño-Polo M; Esperante SA; Kajava AV; Ventura S
    Nanoscale; 2019 Jul; 11(26):12680-12694. PubMed ID: 31237592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal Ions Can Modulate the Self-Assembly and Activity of Catalytic Peptide Amyloids.
    Duran-Meza E; Araya-Secchi R; Romero-Hasler P; Soto-Bustamante EA; Castro-Fernandez V; Castillo-Caceres C; Monasterio O; Diaz-Espinoza R
    Langmuir; 2024 Mar; 40(12):6094-6106. PubMed ID: 38470353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion-based nanomaterials and their emerging applications.
    Díaz-Caballero M; Fernández MR; Navarro S; Ventura S
    Prion; 2018; 12(5-6):266-272. PubMed ID: 30196749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Testing of Synthetic Catalytic Amyloids Based on the Active Site of Enzymes.
    Castillo-Caceres C; Duran-Meza E; Diaz-Espinoza R
    Methods Mol Biol; 2022; 2538():207-216. PubMed ID: 35951302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short peptides self-assemble to produce catalytic amyloids.
    Rufo CM; Moroz YS; Moroz OV; Stöhr J; Smith TA; Hu X; DeGrado WF; Korendovych IV
    Nat Chem; 2014 Apr; 6(4):303-9. PubMed ID: 24651196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous seeding of a prion structure by a generic amyloid form of the fungal prion-forming domain HET-s(218-289).
    Wan W; Bian W; McDonald M; Kijac A; Wemmer DE; Stubbs G
    J Biol Chem; 2013 Oct; 288(41):29604-12. PubMed ID: 23986444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free tyrosine and tyrosine-rich peptide-dependent superoxide generation catalyzed by a copper-binding, threonine-rich neurotoxic peptide derived from prion protein.
    Yokawa K; Kagenishi T; Goto K; Kawano T
    Int J Biol Sci; 2009; 5(1):53-63. PubMed ID: 19158988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.
    Tagliavini F; Prelli F; Verga L; Giaccone G; Sarma R; Gorevic P; Ghetti B; Passerini F; Ghibaudi E; Forloni G
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9678-82. PubMed ID: 8105481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.