These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38816163)
1. Molecular engineering to elevate reactive oxygen species generation for synergetic damage on lipid droplets and mitochondria. Yang M; Li K; Zhong L; Bu Y; Ni Y; Wang T; Huang J; Zhang J; Zhou H Anal Chim Acta; 2024 Jul; 1311():342734. PubMed ID: 38816163 [TBL] [Abstract][Full Text] [Related]
2. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. Liu Z; Zou H; Zhao Z; Zhang P; Shan GG; Kwok RTK; Lam JWY; Zheng L; Tang BZ ACS Nano; 2019 Oct; 13(10):11283-11293. PubMed ID: 31525947 [TBL] [Abstract][Full Text] [Related]
3. Deep-red Emitting Ir(III) Complexes as Type-I Photosensitizers for Lipid Droplets Targeted Photodynamic Therapy. Tong J; Liu A; Huang S; Yao Y; Shan GG; Su ZM Chem Asian J; 2023 Jun; 18(12):e202300175. PubMed ID: 37114295 [TBL] [Abstract][Full Text] [Related]
4. Heavy-atom-free π-twisted photosensitizers for fluorescence bioimaging and photodynamic therapy. Sánchez DP; Morice K; Mutovska MG; Khrouz L; Josse P; Allain M; Gohier F; Blanchard P; Monnereau C; Le Bahers T; Sabouri N; Zagranyarski Y; Cabanetos C; Deiana M J Mater Chem B; 2024 Aug; 12(33):8107-8121. PubMed ID: 39041337 [TBL] [Abstract][Full Text] [Related]
5. A Mitochondria-Targeted Photosensitizer for Combined Pyroptosis and Apoptosis with NIR-II Imaging/Photoacoustic Imaging-Guided Phototherapy. Wang B; Zhou H; Chen L; Ding Y; Zhang X; Chen H; Liu H; Li P; Chen Y; Yin C; Fan Q Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202408874. PubMed ID: 38972844 [TBL] [Abstract][Full Text] [Related]
6. Exploring a Mitochondria Targeting, Dinuclear Cyclometalated Iridium (III) Complex for Image-Guided Photodynamic Therapy in Triple-Negative Breast Cancer Cells. Neelambaran N; Shamjith S; Murali VP; Maiti KK; Joseph J ACS Appl Bio Mater; 2023 Dec; 6(12):5776-5788. PubMed ID: 38061031 [TBL] [Abstract][Full Text] [Related]
7. Dual-Functional AIE Fluorescent Probe for Visualization of Lipid Droplets and Photodynamic Therapy of Cancer. Pei S; Li H; Chen L; Nie G; Wang H; Liu C; Zhang C Anal Chem; 2024 Apr; 96(14):5615-5624. PubMed ID: 38544396 [TBL] [Abstract][Full Text] [Related]
8. Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. Kwon S; Lee Y; Jung Y; Kim JH; Baek B; Lim B; Lee J; Kim I; Lee J Eur J Med Chem; 2018 Mar; 148():116-127. PubMed ID: 29454916 [TBL] [Abstract][Full Text] [Related]
9. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248 [TBL] [Abstract][Full Text] [Related]
10. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation. Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005 [TBL] [Abstract][Full Text] [Related]
11. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Zhang Y; Jia Q; Nan F; Wang J; Liang K; Li J; Xue X; Ren H; Liu W; Ge J; Wang P Biomaterials; 2023 Feb; 293():121953. PubMed ID: 36521428 [TBL] [Abstract][Full Text] [Related]
12. Selenium-Containing Type-I Organic Photosensitizers with Dual Reactive Oxygen Species of Superoxide and Hydroxyl Radicals as Switch-Hitter for Photodynamic Therapy. Wang H; Qin T; Wang W; Zhou X; Lin F; Liang G; Yang Z; Chi Z; Tang BZ Adv Sci (Weinh); 2023 Aug; 10(24):e2301902. PubMed ID: 37357144 [TBL] [Abstract][Full Text] [Related]
13. Regulating donor configuration to develop AIE-active type I photosensitizers for lipid droplet imaging and high-performance photodynamic therapy under hypoxia. Xu J; Jin X; Wu X; Li X; Li C; Li S; Zhang Z; Hua J J Mater Chem B; 2024 Jul; 12(26):6384-6393. PubMed ID: 38845563 [TBL] [Abstract][Full Text] [Related]
14. Efficacy Dependence of Photodynamic Therapy Mediated by Upconversion Nanoparticles: Subcellular Positioning and Irradiation Productivity. Chen D; Tao R; Tao K; Chen B; Choi SK; Tian Q; Xu Y; Zhou G; Sun K Small; 2017 Apr; 13(13):. PubMed ID: 28060457 [TBL] [Abstract][Full Text] [Related]
15. Charge Transfer-Promoted Excited State of a Heavy-Atom-Free Photosensitizer for Efficient Application of Mitochondria-Targeted Fluorescence Imaging and Hypoxia Photodynamic Therapy. Pham TC; Cho M; Nguyen VN; Nguyen VKT; Kim G; Lee S; Dehaen W; Yoon J; Lee S ACS Appl Mater Interfaces; 2024 May; 16(17):21699-21708. PubMed ID: 38634764 [TBL] [Abstract][Full Text] [Related]
16. "Two-Stage Rocket-Propelled" Strategy Boosting Theranostic Efficacy with Mitochondria-Specific Type I-II Photosensitizers. Yang X; Zhang X; Yang Z; Cheng L; Liu X; Cao S; Yue H; Cao Y; Wang KN; Zhang Y ACS Appl Mater Interfaces; 2024 Feb; 16(8):9816-9825. PubMed ID: 38381128 [TBL] [Abstract][Full Text] [Related]
17. Heavy-atom-free triplet benzothiophene-fused BODIPY derivatives for lipid droplet-specific biomaging and photodynamic therapy. Bu W; Yu C; Man Y; Li J; Wu Q; Gui S; Wei Y; Jiao L; Hao E Chem Commun (Camb); 2024 Sep; 60(72):9809-9812. PubMed ID: 39163003 [TBL] [Abstract][Full Text] [Related]
18. Lipid droplet targeting-guided hypoxic photodynamic therapy with curcumin analogs. Li X; Liu W; Zheng X; Jiang M; Guo Y; Sha J; Wu J; Ren H; Gao H; Wang S; Wang P Chem Commun (Camb); 2023 Apr; 59(28):4181-4184. PubMed ID: 36938786 [TBL] [Abstract][Full Text] [Related]
19. Acid-triggered controlled release and fluorescence-switchable phthalocyanine nanoassemblies combined with O Liu X; Chen L; Chen Z Bioorg Chem; 2024 Feb; 143():106986. PubMed ID: 37995641 [TBL] [Abstract][Full Text] [Related]