These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Phan HV; Truong QT; Park HC Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465 [TBL] [Abstract][Full Text] [Related]
7. Interspecific variation in bristle number on forewings of tiny insects does not influence clap-and-fling aerodynamics. Kasoju VT; Moen DS; Ford MP; Ngo TT; Santhanakrishnan A J Exp Biol; 2021 Sep; 224(18):. PubMed ID: 34286832 [TBL] [Abstract][Full Text] [Related]
9. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
10. Wing flexibility reduces the energetic requirements of insect flight. Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414 [TBL] [Abstract][Full Text] [Related]
11. The added mass forces in insect flapping wings. Liu L; Sun M J Theor Biol; 2018 Jan; 437():45-50. PubMed ID: 29037847 [TBL] [Abstract][Full Text] [Related]
12. Biomechanics of Insect Flight Stability and Perturbation Response. Hedrick TL; Blandford E; Taha HE Integr Comp Biol; 2024 Sep; 64(2):611-618. PubMed ID: 38897796 [TBL] [Abstract][Full Text] [Related]
13. Clap and fling mechanism with interacting porous wings in tiny insect flight. Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374 [TBL] [Abstract][Full Text] [Related]
14. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight. Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D Elife; 2021 Mar; 10():. PubMed ID: 33724182 [TBL] [Abstract][Full Text] [Related]
15. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
16. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. Bomphrey RJ; Godoy-Diana R Curr Opin Insect Sci; 2018 Dec; 30():26-32. PubMed ID: 30410869 [TBL] [Abstract][Full Text] [Related]
17. Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight. Lynch J; Gau J; Sponberg S; Gravish N J R Soc Interface; 2021 Feb; 18(175):20200888. PubMed ID: 33593213 [TBL] [Abstract][Full Text] [Related]
18. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. Eberle AL; Dickerson BH; Reinhall PG; Daniel TL J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565 [TBL] [Abstract][Full Text] [Related]
19. The hawkmoth wingbeat is not at resonance. Gau J; Wold ES; Lynch J; Gravish N; Sponberg S Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583 [TBL] [Abstract][Full Text] [Related]
20. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization. Bayiz Y; Ghanaatpishe M; Fathy H; Cheng B Bioinspir Biomim; 2018 May; 13(4):046002. PubMed ID: 29557347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]