These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38816644)

  • 1. De novo design of buttressed loops for sculpting protein functions.
    Jiang H; Jude KM; Wu K; Fallas J; Ueda G; Brunette TJ; Hicks DR; Pyles H; Yang A; Carter L; Lamb M; Li X; Levine PM; Stewart L; Garcia KC; Baker D
    Nat Chem Biol; 2024 May; ():. PubMed ID: 38816644
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Jiang H; Jude KM; Wu K; Fallas J; Ueda G; Brunette TJ; Hicks D; Pyles H; Yang A; Carter L; Lamb M; Li X; Levine PM; Stewart L; Garcia KC; Baker D
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular repeat protein sculpting using rigid helical junctions.
    Brunette TJ; Bick MJ; Hansen JM; Chow CM; Kollman JM; Baker D
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8870-8875. PubMed ID: 32245816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of structured loops for new protein functions.
    Kundert K; Kortemme T
    Biol Chem; 2019 Feb; 400(3):275-288. PubMed ID: 30676995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition.
    Xu Y; Cheah E; Carr PD; van Heeswijk WC; Westerhoff HV; Vasudevan SG; Ollis DL
    J Mol Biol; 1998 Sep; 282(1):149-65. PubMed ID: 9733647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion.
    Caldwell SJ; Haydon IC; Piperidou N; Huang PS; Bick MJ; Sjöström HS; Hilvert D; Baker D; Zeymer C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30362-30369. PubMed ID: 33203677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design.
    Chu AE; Fernandez D; Liu J; Eguchi RR; Huang PS
    Biodes Res; 2022; 2022():9842315. PubMed ID: 37850141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of the streptavidin binding loop.
    Freitag S; Le Trong I; Klumb L; Stayton PS; Stenkamp RE
    Protein Sci; 1997 Jun; 6(6):1157-66. PubMed ID: 9194176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution design of a protein loop.
    Hu X; Wang H; Ke H; Kuhlman B
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17668-73. PubMed ID: 17971437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of calcium-binding sites by combining loop-modeling with machine learning.
    Liu T; Altman RB
    BMC Struct Biol; 2009 Dec; 9():72. PubMed ID: 20003365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo design of high-affinity binders of bioactive helical peptides.
    Vázquez Torres S; Leung PJY; Venkatesh P; Lutz ID; Hink F; Huynh HH; Becker J; Yeh AH; Juergens D; Bennett NR; Hoofnagle AN; Huang E; MacCoss MJ; Expòsit M; Lee GR; Bera AK; Kang A; De La Cruz J; Levine PM; Li X; Lamb M; Gerben SR; Murray A; Heine P; Korkmaz EN; Nivala J; Stewart L; Watson JL; Rogers JM; Baker D
    Nature; 2024 Feb; 626(7998):435-442. PubMed ID: 38109936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation.
    Dettori LG; Torrejon D; Chakraborty A; Dutta A; Mohamed M; Papp C; Kuznetsov VA; Sung P; Feng W; Bah A
    Front Mol Biosci; 2021; 8():691694. PubMed ID: 34179096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniprotein Design: Past, Present, and Prospects.
    Baker EG; Bartlett GJ; Porter Goff KL; Woolfson DN
    Acc Chem Res; 2017 Sep; 50(9):2085-2092. PubMed ID: 28832117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying well-folded
    Peñas-Utrilla D; Marcos E
    Front Mol Biosci; 2022; 9():991380. PubMed ID: 36275629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of the conformations of medium-sized loops in proteins.
    Tramontano A; Chothia C; Lesk AM
    Proteins; 1989; 6(4):382-94. PubMed ID: 2622909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple yet functional phosphate-loop proteins.
    Romero Romero ML; Yang F; Lin YR; Toth-Petroczy A; Berezovsky IN; Goncearenco A; Yang W; Wellner A; Kumar-Deshmukh F; Sharon M; Baker D; Varani G; Tawfik DS
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11943-E11950. PubMed ID: 30504143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.