These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38816665)

  • 1. CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification.
    Liao L; Lu J; Wang L; Zhang Y; Gao D; Wang M
    Med Biol Eng Comput; 2024 Oct; 62(10):3233-3247. PubMed ID: 38816665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer Model for Functional Near-Infrared Spectroscopy Classification.
    Wang Z; Zhang J; Zhang X; Chen P; Wang B
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2559-2569. PubMed ID: 34986110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.
    Akhter J; Naseer N; Nazeer H; Khan H; Mirtaheri P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism.
    Qin Y; Li B; Wang W; Shi X; Peng C; Lu Y
    Neuroscience; 2024 Mar; 542():59-68. PubMed ID: 38369007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking Delayed Hemodynamic Responses for fNIRS Classification.
    Wang Z; Fang J; Zhang J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4528-4538. PubMed ID: 37934649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals.
    Rosas-Romero R; Guevara E; Peng K; Nguyen DK; Lesage F; Pouliot P; Lima-Saad WE
    Comput Biol Med; 2019 Aug; 111():103355. PubMed ID: 31323603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy].
    Zhang Y; Liu D; Gao F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):673-683. PubMed ID: 39218592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring fNIRS-Based Brain State Recognition and Visualization through the use of Explainable Convolutional Neural Networks.
    Chen PH; Wei CS; Lan CC; Chen NF; Wang LC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN-based classification of fNIRS signals in motor imagery BCI system.
    Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480
    [No Abstract]   [Full Text] [Related]  

  • 11. Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks.
    Rabbani MHR; Islam SMR
    Cogn Neurodyn; 2024 Aug; 18(4):1489-1506. PubMed ID: 39104699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous EEG-fNIRS Data Classification Through Selective Channel Representation and Spectrogram Imaging.
    Bunterngchit C; Wang J; Hou ZG
    IEEE J Transl Eng Health Med; 2024; 12():600-612. PubMed ID: 39247844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A General and Scalable Vision Framework for Functional Near-Infrared Spectroscopy Classification.
    Wang Z; Zhang J; Xia Y; Chen P; Wang B
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1982-1991. PubMed ID: 35830404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention-based convolutional neural network with multi-modal temporal information fusion for motor imagery EEG decoding.
    Ma X; Chen W; Pei Z; Zhang Y; Chen J
    Comput Biol Med; 2024 Jun; 175():108504. PubMed ID: 38701593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
    Kwon J; Im CH
    Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy.
    Hakimi N; Jodeiri A; Mirbagheri M; Setarehdan SK
    Comput Biol Med; 2020 Jun; 121():103810. PubMed ID: 32568682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.