These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38817075)

  • 1. Mollisol Erosion-Driven Efflux of Energetic Organic Carbon and Microflora Increases Greenhouse Gas Emissions from Cold-Region Rivers.
    Li C; Pi K; Van Cappellen P; Liang Q; Li H; Zhang L; Wang Y
    Environ Sci Technol; 2024 Jun; 58(23):10298-10308. PubMed ID: 38817075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil respiration induces co-emission of greenhouse gases and methylated selenium from cold-region Mollisols: Significance for selenium deficiency.
    Pi K; Van Cappellen P; Li H; Gan Y; Tong L; Zhong X; Wang Y
    Environ Int; 2024 Jun; 188():108758. PubMed ID: 38781702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland.
    Lin Q; Wang S; Li Y; Riaz L; Yu F; Yang Q; Han S; Ma J
    Sci Total Environ; 2022 Mar; 813():152406. PubMed ID: 34921878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DOM Associates with Greenhouse Gas Emissions in Chinese Rivers under Diverse Land Uses.
    Kang W; Hu X; Feng R; Wei C; Yu F
    Environ Sci Technol; 2023 Oct; 57(40):15004-15013. PubMed ID: 37782146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis.
    Gao H; Tian H; Zhang Z; Xia X
    Sci Total Environ; 2022 May; 820():153288. PubMed ID: 35066045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing.
    Shakoor A; Ashraf F; Shakoor S; Mustafa A; Rehman A; Altaf MM
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38513-38536. PubMed ID: 32770337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice husk and husk biochar soil amendments store soil carbon while water management controls dissolved organic matter chemistry in well-weathered soil.
    Linam F; Limmer MA; Ebling AM; Seyfferth AL
    J Environ Manage; 2023 Aug; 339():117936. PubMed ID: 37068400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission dynamics of greenhouse gases regulated by fluctuation of water level in river-connected wetland.
    Jin Q; Liu H; Xu X; Zhao L; Chen L; Chen L; Shi R; Li W
    J Environ Manage; 2023 Mar; 329():117091. PubMed ID: 36584511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
    Wang G; Xia X; Liu S; Zhang L; Zhang S; Wang J; Xi N; Zhang Q
    Water Res; 2021 Feb; 189():116654. PubMed ID: 33242789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Mushroom Residue Application Rates on Net Greenhouse Gas Emissions in the Purple Paddy Soil].
    Qi L; Gao M; Zhou P; Wang FH; Gao YQ; Chen SQ; Wu SQ; Deng JL; Wen T
    Huan Jing Ke Xue; 2018 Jun; 39(6):2827-2836. PubMed ID: 29965641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Net greenhouse gas balance in U.S. croplands: How can soils be part of the climate solution?
    You Y; Tian H; Pan S; Shi H; Lu C; Batchelor WD; Cheng B; Hui D; Kicklighter D; Liang XZ; Li X; Melillo J; Pan N; Prior SA; Reilly J
    Glob Chang Biol; 2024 Jan; 30(1):e17109. PubMed ID: 38273550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulatory role of endogenous iron on greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China.
    Han J; Shi L; Wang Y; Chen Z; Wu L
    Environ Sci Pollut Res Int; 2018 May; 25(15):14511-14520. PubMed ID: 29525872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial-temporal Characteristics and Driving Factors of Greenhouse Gas Emissions from Rivers in a Rapidly Urbanizing Area].
    Liu TT; Wang XF; Yuan XZ; Gong XJ; Hou CL
    Huan Jing Ke Xue; 2019 Jun; 40(6):2827-2839. PubMed ID: 31854677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal changes in greenhouse gas emissions and soil organic carbon sequestration for major cropping systems across China and their drivers over the past two decades.
    Wang Y; Tao F; Yin L; Chen Y
    Sci Total Environ; 2022 Aug; 833():155087. PubMed ID: 35421495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of Selenium from Mollisol Paddy Wetlands of Cold Regions: Insights from Flow-through Reactor Experiments and Process-Based Modeling.
    Pi K; Van Cappellen P; Tong L; Gan Y; Wang Y
    Environ Sci Technol; 2023 Apr; 57(15):6228-6237. PubMed ID: 37026466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing'an Mountains of China.].
    Hao L; Mu CC; Chang YH; Shen ZQ; Han LD; Jiang N; Peng WH
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1713-1725. PubMed ID: 31107028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High exogenous humus inhibits greenhouse gas emissions from steppe lakes.
    Liu B; Gao J; Xue M; Lu B; Ye C; Liu J; Yang J; Qian J; Xu X; Wang W; Tao Y; Ao W
    Environ Pollut; 2023 Feb; 319():120946. PubMed ID: 36574810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons.
    Krickov IV; Lim AG; Shirokova LS; Korets MА; Karlsson J; Pokrovsky OS
    Sci Total Environ; 2023 Feb; 859(Pt 1):160202. PubMed ID: 36395838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.