These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38817680)

  • 1. New xylose transporters support the simultaneous consumption of glucose and xylose in
    Zhu X; Fan F; Qiu H; Shao M; Li D; Yu Y; Bi C; Zhang X
    mLife; 2022 Jun; 1(2):156-170. PubMed ID: 38817680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli.
    Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK
    Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose.
    Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S
    Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli.
    Alva A; Sabido-Ramos A; Escalante A; Bolívar F
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1463-1479. PubMed ID: 31900563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.
    Groot J; Cepress-Mclean SC; Robbins-Pianka A; Knight R; Gill RT
    Biotechnol Bioeng; 2017 Apr; 114(4):885-893. PubMed ID: 27861733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation.
    Qiao J; Fang Y; Li Z; Li J; Cai J; Liu W; Wang H; Zhu X; Zhang X
    Biotechnol Bioeng; 2024 Jul; ():. PubMed ID: 39082641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains.
    Xia T; Eiteman MA; Altman E
    Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical routes for uptake and conversion of xylose by microorganisms.
    Zhao Z; Xian M; Liu M; Zhao G
    Biotechnol Biofuels; 2020; 13():21. PubMed ID: 32021652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.