BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38817924)

  • 1. Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent.
    Hussain Z; Dwivedi D; Kwon I
    Front Bioeng Biotechnol; 2024; 12():1385845. PubMed ID: 38817924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements.
    Ye Q; Jin X; Zhu B; Gao H; Wei N
    Environ Sci Technol; 2023 Mar; 57(10):4276-4285. PubMed ID: 36790366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash.
    Liu P; Zhao S; Xie N; Yang L; Wang Q; Wen Y; Chen H; Tang Y
    Environ Sci Technol; 2023 Apr; 57(13):5414-5423. PubMed ID: 36942728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes.
    Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H
    Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery.
    Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of rare earth elements present in coal ash by sequential extraction.
    Park S; Kim M; Lim Y; Yu J; Chen S; Woo SW; Yoon S; Bae S; Kim HS
    J Hazard Mater; 2021 Jan; 402():123760. PubMed ID: 33254773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Diaz V; Huang CH
    Environ Sci Technol; 2021 Jul; 55(13):9209-9220. PubMed ID: 34159779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
    Taggart RK; Hower JC; Dwyer GS; Hsu-Kim H
    Environ Sci Technol; 2016 Jun; 50(11):5919-26. PubMed ID: 27228215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Ashes to Riches: Microscale Phenomena Controlling Rare Earths Recovery from Coal Fly Ash.
    Gerardo S; Davletshin AR; Loewy SL; Song W
    Environ Sci Technol; 2022 Nov; 56(22):16200-16208. PubMed ID: 36240063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Kulkarni Y; Huang CH
    Environ Sci Technol; 2022 Apr; 56(8):5150-5160. PubMed ID: 35380811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements.
    Dong Z; Mattocks JA; Deblonde GJ; Hu D; Jiao Y; Cotruvo JA; Park DM
    ACS Cent Sci; 2021 Nov; 7(11):1798-1808. PubMed ID: 34841054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of rare earth elements and toxic heavy metals in coal and coal fly ash.
    Okeme IC; Crane RA; Nash WM; Ojonimi TI; Scott TB
    RSC Adv; 2022 Jun; 12(30):19284-19296. PubMed ID: 35865568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion.
    Wu G; Shi N; Wang T; Cheng CM; Wang J; Tian C; Pan WP
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44709-44722. PubMed ID: 35133594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravity-Driven Separation for Enrichment of Rare Earth Elements Using Lanthanide Binding Peptide-Immobilized Resin.
    Sree H; Swarup G; Gupta S; Pushpavanam K
    ACS Appl Bio Mater; 2024 Apr; ():. PubMed ID: 38685483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance.
    Middleton A; Hedin BC; Hsu-Kim H
    Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in bulk and microscale yttrium speciation in coal combustion fly ash.
    Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H
    Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin.
    Deblonde GJ; Mattocks JA; Park DM; Reed DW; Cotruvo JA; Jiao Y
    Inorg Chem; 2020 Sep; 59(17):11855-11867. PubMed ID: 32686425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria.
    Park DM; Brewer A; Reed DW; Lammers LN; Jiao Y
    Environ Sci Technol; 2017 Nov; 51(22):13471-13480. PubMed ID: 28944666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of enrichment, correlation, and leaching patterns of rare earth elements in coal fly ash assisted by statistical measures.
    Ju T; Meng Y; Han S; Meng F; Lin L; Li J; Jiang J
    Sci Total Environ; 2023 Dec; 902():166070. PubMed ID: 37558077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly-efficient and sequential recovery of rare earth elements, alumina and silica from coal fly ash via a novel recyclable ZnO sinter method.
    Fan XL; Xia JL; Zhang DR; Nie ZY; Liu YP; Zhang LJ; Zhang DY
    J Hazard Mater; 2022 Sep; 437():129308. PubMed ID: 35714541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.