These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38817926)
1. Multi-mode adaptive control strategy for a lower limb rehabilitation robot. Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926 [TBL] [Abstract][Full Text] [Related]
2. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot. Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X Front Robot AI; 2018; 5():116. PubMed ID: 33500995 [TBL] [Abstract][Full Text] [Related]
3. Autonomous motion and control of lower limb exoskeleton rehabilitation robot. Gao X; Zhang P; Peng X; Zhao J; Liu K; Miao M; Zhao P; Luo D; Li Y Front Bioeng Biotechnol; 2023; 11():1223831. PubMed ID: 37520296 [No Abstract] [Full Text] [Related]
4. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot. Zhou J; Peng H; Zheng M; Wei Z; Fan T; Song R IEEE Trans Neural Syst Rehabil Eng; 2024; 32():314-324. PubMed ID: 38165796 [TBL] [Abstract][Full Text] [Related]
5. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
6. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot. Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385 [TBL] [Abstract][Full Text] [Related]
7. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
8. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
9. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related]
10. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
11. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force]. Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608 [TBL] [Abstract][Full Text] [Related]
12. Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction. Zhang Y; Li T; Tao H; Liu F; Hu B; Wu M; Yu H Front Bioeng Biotechnol; 2023; 11():1332689. PubMed ID: 38234302 [No Abstract] [Full Text] [Related]
13. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot. Li X; Yang Q; Song R IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619 [TBL] [Abstract][Full Text] [Related]
14. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
15. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training. Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256 [TBL] [Abstract][Full Text] [Related]
16. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915 [TBL] [Abstract][Full Text] [Related]
17. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance. Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981 [TBL] [Abstract][Full Text] [Related]
18. Impedance Sliding-Mode Control Based on Stiffness Scheduling for Rehabilitation Robot Systems. Hu K; Ma Z; Zou S; Li J; Ding H Cyborg Bionic Syst; 2024; 5():0099. PubMed ID: 38827223 [TBL] [Abstract][Full Text] [Related]
19. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot]. Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386 [TBL] [Abstract][Full Text] [Related]
20. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot. Zhou J; Peng H; Su S; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1858-1868. PubMed ID: 37015454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]