These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38817934)

  • 21. Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt.
    Maruthadurai R; Das B; Ramesh R
    Pest Manag Sci; 2023 Jan; 79(1):295-305. PubMed ID: 36151887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the potential distribution range of Batocera horsfieldi under CMIP6 climate change using the MaxEnt model.
    Wei X; Xu D; Liu Q; Wu Y; Zhuo Z
    J Econ Entomol; 2024 Feb; 117(1):187-198. PubMed ID: 38007398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of cadmium-induced phytotoxicity in Cabomba caroliniana by urea involves photosynthetic metabolism and antioxidant status.
    Huang W; Shao H; Zhou S; Zhou Q; Li W; Xing W
    Ecotoxicol Environ Saf; 2017 Oct; 144():88-96. PubMed ID: 28601521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased Invasion Risk of
    Qi Y; Xian X; Zhao H; Wang R; Huang H; Zhang Y; Yang M; Liu W
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501288
    [No Abstract]   [Full Text] [Related]  

  • 26. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes.
    Ma F; Yuan X
    Sci Total Environ; 2021 Jun; 772():145004. PubMed ID: 33770855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of the Current and Future Distribution of Tomato Leafminer in China Using the MaxEnt Model.
    Yang H; Jiang N; Li C; Li J
    Insects; 2023 Jun; 14(6):. PubMed ID: 37367347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest
    Jing K; Li M; Zhao H; Guo J; Yang N; Yang M; Xian X; Liu W
    Insects; 2023 Apr; 14(5):. PubMed ID: 37233053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?
    Padalia H; Srivastava V; Kushwaha SP
    Environ Monit Assess; 2015 Apr; 187(4):210. PubMed ID: 25810084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global spatial distribution of Chromolaena odorata habitat under climate change: random forest modeling of one of the 100 worst invasive alien species.
    Adhikari P; Lee YH; Poudel A; Hong SH; Park YS
    Sci Rep; 2023 Jun; 13(1):9745. PubMed ID: 37328479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multidimensional climatic niche conservatism and invasion risk of
    Zhang HS; Xu L; Lyu WW; Zhou Y; Wang WF; Gao RH; Cui SP; Zhang ZW
    Ying Yong Sheng Tai Xue Bao; 2023 Jun; 34(6):1649-1658. PubMed ID: 37694428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling.
    Shi J; Xia M; He G; Gonzalez NCT; Zhou S; Lan K; Ouyang L; Shen X; Jiang X; Cao F; Li H
    J Environ Manage; 2024 Apr; 357():120841. PubMed ID: 38581898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the potential global distribution of
    Changjun G; Yanli T; Linshan L; Bo W; Yili Z; Haibin Y; Xilong W; Zhuoga Y; Binghua Z; Bohao C
    Ecol Evol; 2021 Sep; 11(17):12092-12113. PubMed ID: 34522363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the potential suitable habitats of
    Yang QJ; Li R
    Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):538-548. PubMed ID: 33650363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios.
    Bania JK; Deka JR; Hazarika A; Das AK; Nath AJ; Sileshi GW
    Sci Rep; 2023 Nov; 13(1):20221. PubMed ID: 37980365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential global distribution of Setaria italica, an important species for dryland agriculture in the context of climate change.
    Yang J; Jiang X; Ma Y; Liu M; Shama Z; Li J; Huang Y
    PLoS One; 2024; 19(4):e0301751. PubMed ID: 38626039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of climate change on the distribution of venomous Conus (Gastropoda: Conidae) species in the Indo-Pacific region.
    Siqueira-Silva T; Martinez PA
    Mar Environ Res; 2023 Nov; 192():106237. PubMed ID: 37875034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning.
    Deb JC; Phinn S; Butt N; McAlpine CA
    Environ Manage; 2017 Sep; 60(3):422-435. PubMed ID: 28474209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the suitability and dynamics of three medicinal
    Luo W; Han S; Yu T; Wang P; Ma Y; Wan M; Liu J; Li Z; Tao J
    Front Plant Sci; 2023; 14():1194444. PubMed ID: 37929169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate, hydrology, and human disturbance drive long-term (1988-2018) macrophyte patterns in water diversion lakes.
    Xia W; Zhu B; Zhang S; Liu H; Qu X; Liu Y; Rudstam LG; Anderson JT; Ni L; Chen Y
    J Environ Manage; 2022 Oct; 319():115726. PubMed ID: 35849931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.