BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38817960)

  • 1. Simulation of Automatically Annotated Visible and Multi-/Hyperspectral Images Using the Helios 3D Plant and Radiative Transfer Modeling Framework.
    Lei T; Graefe J; Mayanja IK; Earles M; Bailey BN
    Plant Phenomics; 2024; 6():0189. PubMed ID: 38817960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning.
    Chen Q; Zheng B; Chen T; Chapman SC
    J Exp Bot; 2022 Nov; 73(19):6558-6574. PubMed ID: 35768163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification.
    Hao Wu ; Prasad S
    IEEE Trans Image Process; 2018 Mar; 27(3):1259-1270. PubMed ID: 29990156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification.
    Bai Y; Sun X; Ji Y; Fu W; Duan X
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helios: A Scalable 3D Plant and Environmental Biophysical Modeling Framework.
    Bailey BN
    Front Plant Sci; 2019; 10():1185. PubMed ID: 31681349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Hand Pose Estimation Using Synthetic Data and Weakly Labeled RGB Images.
    Cai Y; Ge L; Cai J; Thalmann NM; Yuan J
    IEEE Trans Pattern Anal Mach Intell; 2021 Nov; 43(11):3739-3753. PubMed ID: 32396073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery.
    Tagliabue G; Boschetti M; Bramati G; Candiani G; Colombo R; Nutini F; Pompilio L; Rivera-Caicedo JP; Rossi M; Rossini M; Verrelst J; Panigada C
    ISPRS J Photogramm Remote Sens; 2022 May; 187():362-377. PubMed ID: 36093126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution.
    Liu Z; Zheng Y; Han XH
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain MR image simulation for deep learning based medical image analysis networks.
    Ayaz A; Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Methods Programs Biomed; 2024 May; 248():108115. PubMed ID: 38503072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data.
    Hong D; Yokoya N; Xia GS; Chanussot J; Zhu XX
    ISPRS J Photogramm Remote Sens; 2020 Sep; 167():12-23. PubMed ID: 32904376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion neural networks for plant classification: learning to combine RGB, hyperspectral, and lidar data.
    Scholl VM; McGlinchy J; Price-Broncucia T; Balch JK; Joseph MB
    PeerJ; 2021; 9():e11790. PubMed ID: 34395073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction.
    Hong D; Yokoya N; Chanussot J; Xu J; Zhu XX
    ISPRS J Photogramm Remote Sens; 2019 Dec; 158():35-49. PubMed ID: 31853165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of plant models in deep learning: an application to leaf counting in rosette plants.
    Ubbens J; Cieslak M; Prusinkiewicz P; Stavness I
    Plant Methods; 2018; 14():6. PubMed ID: 29375647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image factory: A method for synthesizing novel CT images with anatomical guidance.
    Krishna A; Yenneti S; Wang G; Mueller K
    Med Phys; 2024 May; 51(5):3464-3479. PubMed ID: 38043097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised spectral reconstruction from RGB images under two lighting conditions.
    Cao X; Lian Y; Liu Z; Li J; Wang K
    Opt Lett; 2024 Apr; 49(8):1993-1996. PubMed ID: 38621059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supervised Plant Phenotyping by Combining Domain Adaptation with 3D Plant Model Simulations: Application to Wheat Leaf Counting at Seedling Stage.
    Li Y; Zhan X; Liu S; Lu H; Jiang R; Guo W; Chapman S; Ge Y; Solan B; Ding Y; Baret F
    Plant Phenomics; 2023; 5():0041. PubMed ID: 37223315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
    Wang G; Luo X; Gu R; Yang S; Qu Y; Zhai S; Zhao Q; Li K; Zhang S
    Comput Methods Programs Biomed; 2023 Apr; 231():107398. PubMed ID: 36773591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.