These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38817960)

  • 21. An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture.
    Beck MA; Liu CY; Bidinosti CP; Henry CJ; Godee CM; Ajmani M
    PLoS One; 2020; 15(12):e0243923. PubMed ID: 33332382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations.
    Wu H; Niyogisubizo J; Zhao K; Meng J; Xi W; Li H; Pan Y; Wei Y
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RGB Imaging as a Tool for Remote Sensing of Characteristics of Terrestrial Plants: A Review.
    Kior A; Yudina L; Zolin Y; Sukhov V; Sukhova E
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Unsupervised Transfer Learning Framework for Visible-Thermal Pedestrian Detection.
    Lyu C; Heyer P; Goossens B; Philips W
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant Species Classification Based on Hyperspectral Imaging
    Liu KH; Yang MH; Huang ST; Lin C
    Front Plant Sci; 2022; 13():855660. PubMed ID: 35498669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
    Singh B; Kumar S; Elangovan A; Vasht D; Arya S; Duc NT; Swami P; Pawar GS; Raju D; Krishna H; Sathee L; Dalal M; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1214801. PubMed ID: 37448870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction.
    Li P; Ebner M; Noonan P; Horgan C; Bahl A; Ourselin S; Shapey J; Vercauteren T
    Comput Methods Biomech Biomed Eng Imaging Vis; 2022; 10(4):409-417. PubMed ID: 38013723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping.
    Dobrescu A; Giuffrida MV; Tsaftaris SA
    Front Plant Sci; 2020; 11():141. PubMed ID: 32256503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AI-assisted image analysis and physiological validation for progressive drought detection in a diverse panel of
    Renó V; Cardellicchio A; Romanjenko BC; Guadagno CR
    Front Plant Sci; 2023; 14():1305292. PubMed ID: 38449576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers.
    Wang T; Crawford MM; Tuinstra MR
    Front Plant Sci; 2023; 14():1138479. PubMed ID: 37113602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PDSE-Lite: lightweight framework for plant disease severity estimation based on Convolutional Autoencoder and Few-Shot Learning.
    Bedi P; Gole P; Marwaha S
    Front Plant Sci; 2023; 14():1319894. PubMed ID: 38259916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elimination of Leaf Angle Impacts on Plant Reflectance Spectra Using Fusion of Hyperspectral Images and 3D Point Clouds.
    Zhang L; Jin J; Wang L; Rehman TU; Gee MT
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery.
    Adke S; Li C; Rasheed KM; Maier FW
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral Representation vis Data-Guided Sparsity for Hyperspectral Image Super-Resolution
    Han XH; Sun Y; Wang J; Shi B; Zheng Y; Chen YW
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. KAT4IA:
    Guo X; Qiu Y; Nettleton D; Yeh CT; Zheng Z; Hey S; Schnable PS
    Plant Phenomics; 2021; 2021():9805489. PubMed ID: 34405144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.