These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38817981)
1. Effects of theacrine on the astringency of EGCG by affecting salivary protein - EGCG interactions through different molecular mechanisms. Xie J; Shi Y; Luo W; Fang W; Luo L; Zeng L Food Chem X; 2024 Jun; 22():101474. PubMed ID: 38817981 [TBL] [Abstract][Full Text] [Related]
2. A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate. Ye QQ; Chen GS; Pan W; Cao QQ; Zeng L; Yin JF; Xu YQ Food Chem; 2021 Mar; 340():127845. PubMed ID: 32889218 [TBL] [Abstract][Full Text] [Related]
3. Effects of the Taste Substances and Metal Cations in Green Tea Infusion on the Turbidity of EGCG-Mucin Mixtures. Xu L; Ye Q; Cao Q; Liu Y; Li X; Liu Z; Gong Y; Zhang S; Yin J; Xu Y Foods; 2024 Apr; 13(8):. PubMed ID: 38672847 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Ma C; Xie Y; Huang X; Zhang L; Julian McClements D; Zou L; Liu W Food Chem; 2024 Mar; 437(Pt 2):137913. PubMed ID: 37939421 [TBL] [Abstract][Full Text] [Related]
5. Repeated exposure to epigallocatechin gallate solution or water alters bitterness intensity and salivary protein profile. Davis LA; Running CA Physiol Behav; 2021 Dec; 242():113624. PubMed ID: 34655570 [TBL] [Abstract][Full Text] [Related]
6. Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion. Chen YH; Zhang YH; Chen GS; Yin JF; Chen JX; Wang F; Xu YQ NPJ Sci Food; 2022 Jan; 6(1):8. PubMed ID: 35087059 [TBL] [Abstract][Full Text] [Related]
7. Reorganisation of the salivary mucin network by dietary components: insights from green tea polyphenols. Davies HS; Pudney PD; Georgiades P; Waigh TA; Hodson NW; Ridley CE; Blanch EW; Thornton DJ PLoS One; 2014; 9(9):e108372. PubMed ID: 25264771 [TBL] [Abstract][Full Text] [Related]
8. Caffeine weakens the astringency of epigallocatechin gallate by inhibiting its interaction with salivary proteins. Zhou Z; Ou M; Shen W; Jin W; Yang G; Huang W; Guo C Food Chem; 2024 Dec; 460(Pt 3):140753. PubMed ID: 39116773 [TBL] [Abstract][Full Text] [Related]
9. Molecular model for astringency produced by polyphenol/protein interactions. Jöbstl E; O'Connell J; Fairclough JP; Williamson MP Biomacromolecules; 2004; 5(3):942-9. PubMed ID: 15132685 [TBL] [Abstract][Full Text] [Related]
10. Exploration of the mechanism of temperature influence on bitter taste of theacrine by activating human bitter taste receptor hTAS2R14. Xie J; Wen H; Shi Y; Wei F; Jiang J; Luo L; Zeng L Food Res Int; 2024 Oct; 193():114857. PubMed ID: 39160053 [TBL] [Abstract][Full Text] [Related]
11. Experience-Dependent Behavioral Plasticity in Avoiding Epigallocatechin Gallate (EGCG) Requires DAF-16/FOXO in the AIY Interneurons of Caenorhabditis elegans. Ishikawa S; Takezawa Y; Iida C; Yamada Y; Chiba K; Ali MS; Sun S; Kage-Nakadai E J Nutr Sci Vitaminol (Tokyo); 2024; 70(2):164-173. PubMed ID: 38684387 [TBL] [Abstract][Full Text] [Related]
12. Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation. Pascal C; Poncet-Legrand C; Cabane B; Vernhet A J Agric Food Chem; 2008 Aug; 56(15):6724-32. PubMed ID: 18642847 [TBL] [Abstract][Full Text] [Related]
13. The role of salivary proteins in the mechanism of astringency. Lee CA; Ismail B; Vickers ZM J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of unsaturated alkanoic acid amides as maskers of epigallocatechin gallate astringency. Obst K; Paetz S; Backes M; Reichelt KV; Ley JP; Engel KH J Agric Food Chem; 2013 May; 61(18):4242-9. PubMed ID: 23582039 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analyses of the bitterness and astringency of catechins from green tea. Xu YQ; Zhang YN; Chen JX; Wang F; Du QZ; Yin JF Food Chem; 2018 Aug; 258():16-24. PubMed ID: 29655718 [TBL] [Abstract][Full Text] [Related]
16. Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception. Gonçalves L; Jesus M; Brandão E; Magalhães P; Mateus N; Freitas V; Soares S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985492 [TBL] [Abstract][Full Text] [Related]
17. Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Kurogi M; Miyashita M; Emoto Y; Kubo Y; Saitoh O Chem Senses; 2012 Feb; 37(2):167-77. PubMed ID: 21890837 [TBL] [Abstract][Full Text] [Related]
18. Study of the relationship between taste sensor response and the amount of epigallocatechin gallate adsorbed onto a lipid-polymer membrane. Harada Y; Tahara Y; Toko K Sensors (Basel); 2015 Mar; 15(3):6241-9. PubMed ID: 25781512 [TBL] [Abstract][Full Text] [Related]
19. Quantification of Oral Roughness Perception and Comparison with Mechanism of Astringency Perception. Linne B; Simons CT Chem Senses; 2017 Sep; 42(7):525-535. PubMed ID: 28575283 [TBL] [Abstract][Full Text] [Related]
20. Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation. Deng S; Zhang G; Olayemi Aluko O; Mo Z; Mao J; Zhang H; Liu X; Ma M; Wang Q; Liu H Food Res Int; 2022 Jul; 157():111262. PubMed ID: 35761574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]