BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38818059)

  • 1. AM-DMF-SCP: Integrated Single-Cell Proteomics Analysis on an Active Matrix Digital Microfluidic Chip.
    Yang Z; Jin K; Chen Y; Liu Q; Chen H; Hu S; Wang Y; Pan Z; Feng F; Shi M; Xie H; Ma H; Zhou H
    JACS Au; 2024 May; 4(5):1811-1823. PubMed ID: 38818059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition.
    Fang W; Du Z; Kong L; Fu B; Wang G; Zhang Y; Qin W
    Anal Chim Acta; 2023 Apr; 1251():341038. PubMed ID: 36925302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution for Mass Production of High-Throughput Digital Microfluidic Chip Based on a-Si TFT with In-Pixel Boost Circuit.
    Qin F; Zhang K; Lin B; Su P; Jia Z; Xi K; Ye J; Gu S
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics.
    Zheng R; Matzinger M; Mayer RL; Valenta A; Sun X; Mechtler K
    Anal Chem; 2023 Dec; 95(51):18673-18678. PubMed ID: 38088903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in microfluidics for single-cell functional proteomics.
    Gebreyesus ST; Muneer G; Huang CC; Siyal AA; Anand M; Chen YJ; Tu HL
    Lab Chip; 2023 Mar; 23(7):1726-1751. PubMed ID: 36811978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Miniaturized Digital Microfluidic Antimicrobial Susceptibility Test Using a Chip-Integrated Optical Oxygen Sensor.
    Qiu W; Nagl S
    ACS Sens; 2021 Mar; 6(3):1147-1156. PubMed ID: 33720687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Cell Proteomics by Barcoded Phage-Displayed Screening via an Integrated Microfluidic Chip.
    Wang Y; Zhao J; Jiang Z; Ma Y; Zhang R
    Methods Mol Biol; 2024; 2793():101-112. PubMed ID: 38526726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays.
    Moazami E; Perry JM; Soffer G; Husser MC; Shih SCC
    Anal Chem; 2019 Apr; 91(8):5159-5168. PubMed ID: 30945840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SingPro: a knowledge base providing single-cell proteomic data.
    Lian X; Zhang Y; Zhou Y; Sun X; Huang S; Dai H; Han L; Zhu F
    Nucleic Acids Res; 2024 Jan; 52(D1):D552-D561. PubMed ID: 37819028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Microfluidic Cell Culture.
    Ng AH; Li BB; Chamberlain MD; Wheeler AR
    Annu Rev Biomed Eng; 2015; 17():91-112. PubMed ID: 26643019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition.
    Petrosius V; Aragon-Fernandez P; Üresin N; Kovacs G; Phlairaharn T; Furtwängler B; Op De Beeck J; Skovbakke SL; Goletz S; Thomsen SF; Keller UAD; Natarajan KN; Porse BT; Schoof EM
    Nat Commun; 2023 Sep; 14(1):5910. PubMed ID: 37737208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication of single-cell proteomics data reveals important computational challenges.
    Vanderaa C; Gatto L
    Expert Rev Proteomics; 2021 Oct; 18(10):835-843. PubMed ID: 34602016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ANPELA: Significantly Enhanced Quantification Tool for Cytometry-Based Single-Cell Proteomics.
    Zhang Y; Sun H; Lian X; Tang J; Zhu F
    Adv Sci (Weinh); 2023 May; 10(15):e2207061. PubMed ID: 36950745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated digital microfluidic sample preparation for next-generation DNA sequencing.
    Kim H; Bartsch MS; Renzi RF; He J; Van de Vreugde JL; Claudnic MR; Patel KD
    J Lab Autom; 2011 Dec; 16(6):405-14. PubMed ID: 22093297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Easy and Accessible Workflow for Label-Free Single-Cell Proteomics.
    Sanchez-Avila X; Truong T; Xie X; Webber KGI; Johnston SM; Lin HL; Axtell NB; Puig-Sanvicens V; Kelly RT
    J Am Soc Mass Spectrom; 2023 Oct; 34(10):2374-2380. PubMed ID: 37594399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform.
    Tong Z; Yang D; Shen C; Li C; Xu X; Li Q; Wu Z; Ma H; Chen F; Mao H
    Anal Chim Acta; 2024 Apr; 1296():342337. PubMed ID: 38401929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.