BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38818059)

  • 21. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation.
    Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R
    Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance.
    Zhang T; Qu R; Chan S; Lai M; Tong L; Feng F; Chen H; Song T; Song P; Bai G; Liu Y; Wang Y; Li Y; Su Y; Shen Y; Sun Y; Chen Y; Geng M; Ding K; Ding J; Xie H
    Mol Cancer; 2020 May; 19(1):90. PubMed ID: 32404161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized data-independent acquisition approach for proteomic analysis at single-cell level.
    Wang Y; Lih TM; Chen L; Xu Y; Kuczler MD; Cao L; Pienta KJ; Amend SR; Zhang H
    Clin Proteomics; 2022 Jul; 19(1):24. PubMed ID: 35810282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SCP Viz - A universal graphical user interface for single protein analysis in single cell proteomics datasets.
    Warshanna A; Orsburn BC
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
    Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y
    Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Deciphering cellular processes responding to lethality of 17
    Li Y; Liu X; Wang Y; Liu Z; Ye M; Wang H
    Se Pu; 2024 Apr; 42(4):333-344. PubMed ID: 38566422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform.
    Webber KGI; Truong T; Johnston SM; Zapata SE; Liang Y; Davis JM; Buttars AD; Smith FB; Jones HE; Mahoney AC; Carson RH; Nwosu AJ; Heninger JL; Liyu AV; Nordin GP; Zhu Y; Kelly RT
    Anal Chem; 2022 Apr; 94(15):6017-6025. PubMed ID: 35385261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable.
    Kothamachu VB; Zaini S; Muffatto F
    SLAS Technol; 2020 Oct; 25(5):411-426. PubMed ID: 32584152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital microfluidic isolation of single cells for -Omics.
    Lamanna J; Scott EY; Edwards HS; Chamberlain MD; Dryden MDM; Peng J; Mair B; Lee A; Chan C; Sklavounos AA; Heffernan A; Abbas F; Lam C; Olson ME; Moffat J; Wheeler AR
    Nat Commun; 2020 Nov; 11(1):5632. PubMed ID: 33177493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress.
    Yang C; Gan X; Zeng Y; Xu Z; Xu L; Hu C; Ma H; Chai B; Hu S; Chai Y
    Biosens Bioelectron; 2023 Dec; 242():115723. PubMed ID: 37832347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated digital microfluidic platform for voltammetric analysis.
    Dryden MD; Rackus DD; Shamsi MH; Wheeler AR
    Anal Chem; 2013 Sep; 85(18):8809-16. PubMed ID: 24001207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A digital microfluidic system with 3D microstructures for single-cell culture.
    Zhai J; Li H; Wong AH; Dong C; Yi S; Jia Y; Mak PI; Deng CX; Martins RP
    Microsyst Nanoeng; 2020; 6():6. PubMed ID: 34567621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digital microfluidic platform assembled into a home-made studio for sample preparation and colorimetric sensing of S-nitrosocysteine.
    Rocha DS; de Campos RPS; Silva-Neto HA; Duarte-Junior GF; Bedioui F; Coltro WKT
    Anal Chim Acta; 2023 May; 1254():341077. PubMed ID: 37005016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting EGFR gene amplification using a fluorescence in situ hybridization platform based on digital microfluidics.
    Shen C; Zhan C; Tong Z; Yin H; Hui J; Qiu S; Li Q; Xu X; Ma H; Wu Z; Shi N; Mao H
    Talanta; 2024 Mar; 269():125444. PubMed ID: 38042143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additively Manufactured Digital Microfluidic Platforms for Ion-Selective Sensing.
    Min X; Bao C; Kim WS
    ACS Sens; 2019 Apr; 4(4):918-923. PubMed ID: 30855128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Cost Graphene-Based Digital Microfluidic System.
    Yafia M; Foudeh AM; Tabrizian M; Najjaran H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32971896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EGFR mutation detection of lung circulating tumor cells using a multifunctional microfluidic chip.
    Wang Y; Gao W; Wu M; Zhang X; Liu W; Zhou Y; Jia C; Cong H; Chen X; Zhao J
    Talanta; 2021 Apr; 225():122057. PubMed ID: 33592778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.
    Moon H; Wheeler AR; Garrell RL; Loo JA; Kim CJ
    Lab Chip; 2006 Sep; 6(9):1213-9. PubMed ID: 16929401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications.
    Ctortecka C; Clark NM; Boyle B; Seth A; Mani DR; Udeshi ND; Carr SA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A digital microfluidic approach to proteomic sample processing.
    Luk VN; Wheeler AR
    Anal Chem; 2009 Jun; 81(11):4524-30. PubMed ID: 19476392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.