These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38818186)
1. Comprehensive assessment for hygrothermal comfort with heat and mass fluxes through a clothing layer during cooling seasons. Oropeza-Perez I Heliyon; 2024 May; 10(10):e31564. PubMed ID: 38818186 [TBL] [Abstract][Full Text] [Related]
2. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Middel A; Krayenhoff ES Sci Total Environ; 2019 Oct; 687():137-151. PubMed ID: 31207504 [TBL] [Abstract][Full Text] [Related]
3. Modeling and Simulation of Human Body Heat Transfer System Based on Air Space Values in 3D Clothing Model. Mosleh S; Abtew MA; Bruniaux P; Tartare G; Loghin EC; Dulgheriu I Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772206 [TBL] [Abstract][Full Text] [Related]
4. Biophysical and physiological integration of proper clothing for exercise. Gonzalez RR Exerc Sport Sci Rev; 1987; 15():261-95. PubMed ID: 3297725 [TBL] [Abstract][Full Text] [Related]
5. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection. Mayor TS; Couto S; Psikuta A; Rossi RM Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the impact of heat on human physical work capacity; part II: the observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices. Foster J; Smallcombe JW; Hodder S; Jay O; Flouris AD; Havenith G Int J Biometeorol; 2022 Mar; 66(3):507-520. PubMed ID: 34743228 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Thermal-Protective Performance of Fire-Retardant Fabrics Considering Garment Aperture Structures Exposed to Flames. Tian M; Wang Q; Xiao Y; Su Y; Zhang X; Li J Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823632 [TBL] [Abstract][Full Text] [Related]
8. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions. Fu M; Weng WG; Yuan HY J Hazard Mater; 2014 Jul; 276():383-92. PubMed ID: 24922096 [TBL] [Abstract][Full Text] [Related]
9. Reversible Humidity Sensitive Clothing for Personal Thermoregulation. Zhong Y; Zhang F; Wang M; Gardner CJ; Kim G; Liu Y; Leng J; Jin S; Chen R Sci Rep; 2017 Mar; 7():44208. PubMed ID: 28281646 [TBL] [Abstract][Full Text] [Related]
10. Effective temperature scale useful for hypo- and hyperbaric environments. Nishi Y; Gagge AP Aviat Space Environ Med; 1977 Feb; 48(2):97-107. PubMed ID: 871288 [TBL] [Abstract][Full Text] [Related]
11. Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. Udayraj ; Wang F; Song W; Ke Y; Xu P; Chow CSW; Noor N Ergonomics; 2019 Jul; 62(7):928-939. PubMed ID: 30885053 [TBL] [Abstract][Full Text] [Related]
12. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Lu Y; Wang F; Peng H; Shi W; Song G Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329 [TBL] [Abstract][Full Text] [Related]
13. [Characteristics of surface energy fluxes over a sparse shrubland ecosystem in the farming-pastoral zone of the Loess Plateau, Northwest China]. Gong TT; Lei HM; Jiao Y; Yang HB; Yang DW Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1625-33. PubMed ID: 26572012 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Core Body Temperature from Multiple Variables. Richmond VL; Davey S; Griggs K; Havenith G Ann Occup Hyg; 2015 Nov; 59(9):1168-78. PubMed ID: 26268995 [TBL] [Abstract][Full Text] [Related]
15. Dataset on the hygrothermal performance of a date palm concrete wall. Alioua T; Agoudjil B; Chennouf N; Boudenne A; Benzarti K Data Brief; 2019 Dec; 27():104590. PubMed ID: 31687433 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the impact of heat on human physical work capacity; part III: the impact of solar radiation varies with air temperature, humidity, and clothing coverage. Foster J; Smallcombe JW; Hodder S; Jay O; Flouris AD; Nybo L; Havenith G Int J Biometeorol; 2022 Jan; 66(1):175-188. PubMed ID: 34709466 [TBL] [Abstract][Full Text] [Related]
17. Moisture effects in heat transfer through clothing systems for wildland firefighters. Lawson LK; Crown EM; Ackerman MY; Dale JD Int J Occup Saf Ergon; 2004; 10(3):227-38. PubMed ID: 15377407 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the risk of heat disorders encountered during work in hot conditions. Malchaire J; Kampmann B; Mehnert P; Gebhardt H; Piette A; Havenith G; Holmér I; Parsons K; Alfano G; Griefahn B Int Arch Occup Environ Health; 2002 Mar; 75(3):153-62. PubMed ID: 11954982 [TBL] [Abstract][Full Text] [Related]
19. The Role of Sports Clothing in Thermoregulation, Comfort, and Performance During Exercise in the Heat: A Narrative Review. Di Domenico I; Hoffmann SM; Collins PK Sports Med Open; 2022 Apr; 8(1):58. PubMed ID: 35482166 [TBL] [Abstract][Full Text] [Related]
20. Thermoresponsive Skin-like Fabric for Personal Comfort and Protection. Pu Y; Fan J ACS Appl Mater Interfaces; 2024 Feb; 16(8):10960-10968. PubMed ID: 38361387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]