BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38818626)

  • 21. Electrode Treatments for Redox Flow Batteries: Translating Our Understanding from Vanadium to Aqueous-Organic.
    Agarwal H; Roy E; Singh N; Klusener PAA; Stephens RM; Zhou QT
    Adv Sci (Weinh); 2024 Jan; 11(1):e2307209. PubMed ID: 37973559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of Oxygenic Groups and sp
    Hassan A; Haile AS; Tzedakis T; Hansen HA; de Silva P
    ChemSusChem; 2021 Sep; 14(18):3945-3952. PubMed ID: 34323377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupled Experimental-Theoretical Characterization of a Carbon Electrode in Vanadium Redox Flow Batteries using X-ray Absorption Spectroscopy.
    Sun W; Kim N; Ebrahim AM; Sharma S; Hollas A; Huang Q; Reed DM; Thomsen EC; Murugesan V; van Buuren A; Wan LF; Lee JRI
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8791-8801. PubMed ID: 38324918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vanadium Redox Flow Battery Using Activated Carbon Catalyst Produced from Low-Density Polyethylene.
    Lim H; Shin M; Phae CG; Kwon Y
    Chem Asian J; 2022 Nov; 17(22):e202200754. PubMed ID: 36089852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High-Rate and Endurable Vanadium Redox Flow Batteries.
    Ling W; Deng Q; Ma Q; Wang HR; Zhou CJ; Xu JK; Yin YX; Wu XW; Zeng XX; Guo YG
    Adv Sci (Weinh); 2018 Dec; 5(12):1801281. PubMed ID: 30581714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life Cycle Assessment of a Vanadium Redox Flow Battery.
    Weber S; Peters JF; Baumann M; Weil M
    Environ Sci Technol; 2018 Sep; 52(18):10864-10873. PubMed ID: 30132664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.
    Park M; Ryu J; Cho J
    Chem Asian J; 2015 Oct; 10(10):2096-110. PubMed ID: 25899910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO
    Li W; Zhang Z; Tang Y; Bian H; Ng TW; Zhang W; Lee CS
    Adv Sci (Weinh); 2016 Apr; 3(4):1500276. PubMed ID: 27774399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass-derived carbon materials for vanadium redox flow battery: From structure to property.
    Zhai M; Ye J; Jiang Y; Yuan S; Li Y; Liu Y; Dai L; Wang L; He Z
    J Colloid Interface Sci; 2023 Dec; 651():902-918. PubMed ID: 37573736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.
    Estevez L; Reed D; Nie Z; Schwarz AM; Nandasiri MI; Kizewski JP; Wang W; Thomsen E; Liu J; Zhang JG; Sprenkle V; Li B
    ChemSusChem; 2016 Jun; 9(12):1455-61. PubMed ID: 27184225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Modification of PAN-Derived Commercial Graphite Felts Using Deep Eutectic Solvents for their Application as Electrodes in All-Vanadium Redox Flow Batteries.
    Murillo-Herrera LM; Aguilar ES; Thielke MW; Jorge Sobrido A
    Chem Asian J; 2023 Mar; 18(5):e202201208. PubMed ID: 36644964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries.
    Lou X; Yuan D; Yu Y; Lei Y; Ding M; Sun Q; Jia C
    Chem Asian J; 2020 Aug; 15(15):2357-2363. PubMed ID: 32166875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrolyte Flow Field Variation: A Cell for Testing and Optimization of Membrane Electrode Assembly for Vanadium Redox Flow Batteries.
    Pichugov RD; Konev DV; Petrov MM; Antipov AE; Loktionov PA; Abunaeva LZ; Usenko AA; Vorotyntsev MA
    Chempluschem; 2020 Aug; 85(8):1919-1927. PubMed ID: 32856795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TiO
    Palanisamy G; Oh TH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-Site Purification of Copper-Contaminated Vanadium Electrolytes by using a Vanadium Redox Flow Battery.
    Reynard D; Vrubel H; Dennison CR; Battistel A; Girault H
    ChemSusChem; 2019 Mar; 12(6):1222-1228. PubMed ID: 30609305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery.
    Jirabovornwisut T; Singh B; Chutimasakul A; Chang JH; Chen JZ; Arpornwichanop A; Chen YS
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.
    Suárez DJ; González Z; Blanco C; Granda M; Menéndez R; Santamaría R
    ChemSusChem; 2014 Mar; 7(3):914-8. PubMed ID: 24520000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen-Treated Rutile TiO
    Vázquez-Galván J; Flox C; Fàbrega C; Ventosa E; Parra A; Andreu T; Morante JR
    ChemSusChem; 2017 May; 10(9):2089-2098. PubMed ID: 28247981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation.
    Ma Q; Zeng XX; Zhou C; Deng Q; Wang PF; Zuo TT; Zhang XD; Yin YX; Wu X; Chai LY; Guo YG
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22381-22388. PubMed ID: 29902919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-principles study of adsorption-desorption kinetics of aqueous V
    Jiang Z; Klyukin K; Alexandrov V
    Phys Chem Chem Phys; 2017 Jun; 19(23):14897-14901. PubMed ID: 28555224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.