BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38818639)

  • 21. Highly Selective Tandem Electroreduction of CO
    Meng DL; Zhang MD; Si DH; Mao MJ; Hou Y; Huang YB; Cao R
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25485-25492. PubMed ID: 34533874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels.
    Ren D; Gao J; Pan L; Wang Z; Luo J; Zakeeruddin SM; Hagfeldt A; Grätzel M
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15036-15040. PubMed ID: 31433551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding Site Diversity Promotes CO
    Li YC; Wang Z; Yuan T; Nam DH; Luo M; Wicks J; Chen B; Li J; Li F; de Arquer FPG; Wang Y; Dinh CT; Voznyy O; Sinton D; Sargent EH
    J Am Chem Soc; 2019 May; 141(21):8584-8591. PubMed ID: 31067857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective and Stable CO
    Liu G; Trinh QT; Wang H; Wu S; Arce-Ramos JM; Sullivan MB; Kraft M; Ager JW; Zhang J; Xu R
    Small; 2023 Oct; 19(41):e2301379. PubMed ID: 37300346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide.
    Shang L; Lv X; Shen H; Shao Z; Zheng G
    J Colloid Interface Sci; 2019 Sep; 552():426-431. PubMed ID: 31151020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerating Industrial-Level NO
    Wang Y; Xia S; Cai R; Zhang J; Wang J; Yu C; Cui J; Zhang Y; Wu J; Yang S; Tan HH; Wu Y
    Small; 2023 Jun; 19(26):e2302295. PubMed ID: 37194952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroreduction of CO
    Karapinar D; Huan NT; Ranjbar Sahraie N; Li J; Wakerley D; Touati N; Zanna S; Taverna D; Galvão Tizei LH; Zitolo A; Jaouen F; Mougel V; Fontecave M
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15098-15103. PubMed ID: 31453650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO
    Zhang Z; Bian L; Tian H; Liu Y; Bando Y; Yamauchi Y; Wang ZL
    Small; 2022 May; 18(18):e2107450. PubMed ID: 35128790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergy effects on Sn-Cu alloy catalyst for efficient CO
    Ye K; Cao A; Shao J; Wang G; Si R; Ta N; Xiao J; Wang G
    Sci Bull (Beijing); 2020 May; 65(9):711-719. PubMed ID: 36659104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning nanocavities of Au@Cu
    Zhang BB; Wang YH; Xu SM; Chen K; Yang YG; Kong QH
    RSC Adv; 2020 May; 10(33):19192-19198. PubMed ID: 35515468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic Effect of Cu
    Kim JY; Kim G; Won H; Gereige I; Jung WB; Jung HT
    Adv Mater; 2022 Jan; 34(3):e2106028. PubMed ID: 34658080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective CO
    Gao D; Sinev I; Scholten F; Arán-Ais RM; Divins NJ; Kvashnina K; Timoshenko J; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):17047-17053. PubMed ID: 31476272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface Co-Modification of Halide Anions and Potassium Cations Promotes High-Rate CO
    Peng C; Yang S; Luo G; Yan S; Shakouri M; Zhang J; Chen Y; Li W; Wang Z; Sham TK; Zheng G
    Adv Mater; 2022 Sep; 34(39):e2204476. PubMed ID: 35963841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO
    Huang X; Kong D; Ma Y; Luo B; Wang B; Zhi L
    Fundam Res; 2023 Sep; 3(5):786-795. PubMed ID: 38933297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (111) Facet-oriented Cu
    Peng C; Ma J; Luo G; Yan S; Zhang J; Chen Y; Chen N; Wang Z; Wei W; Sham TK; Zheng Y; Kuang M; Zheng G
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202316907. PubMed ID: 38436539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Engineering of the Cu
    Du R; Li T; Wu Q; Wang P; Yang X; Fan Y; Qiu Y; Yan K; Wang P; Zhao Y; Zhao WW; Chen G
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36527-36535. PubMed ID: 35926997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles.
    Feng X; Jiang K; Fan S; Kanan MW
    ACS Cent Sci; 2016 Mar; 2(3):169-74. PubMed ID: 27163043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper Cobalt Selenide as a Bifunctional Electrocatalyst for the Selective Reduction of CO
    Saxena A; Kapila S; Medvedeva JE; Nath M
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36892829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable CO adsorption determines ethylene and methane productions from CO
    Bai H; Cheng T; Li S; Zhou Z; Yang H; Li J; Xie M; Ye J; Ji Y; Li Y; Zhou Z; Sun S; Zhang B; Peng H
    Sci Bull (Beijing); 2021 Jan; 66(1):62-68. PubMed ID: 36654315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus-Doped Graphene Aerogel as Self-Supported Electrocatalyst for CO
    Yang F; Liang C; Yu H; Zeng Z; Lam YM; Deng S; Wang J
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202006. PubMed ID: 35821388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.