These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38818762)
1. Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD). Liu S; Yu Y; Xu J; Wang Y; Li D Cell Biol Int; 2024 Aug; 48(8):1169-1184. PubMed ID: 38818762 [TBL] [Abstract][Full Text] [Related]
2. Immune infiltration phenotypes of prostate adenocarcinoma and their clinical implications. Ma Z; Cheng X; Yue T; Shangguan X; Xin Z; Zhang W; Pan J; Wang Q; Xue W Cancer Med; 2021 Aug; 10(15):5358-5374. PubMed ID: 34128342 [TBL] [Abstract][Full Text] [Related]
3. Long non-coding RNA profile study identifies an immune-related lncRNA prognostic signature for prostate adenocarcinoma. Liang L; Xia W; Yao L; Wu Q; Hua L; Cheng G; Wang Z; Zhao R Int Immunopharmacol; 2021 Dec; 101(Pt A):108267. PubMed ID: 34740081 [TBL] [Abstract][Full Text] [Related]
4. Leveraging cell death patterns to predict metastasis in prostate adenocarcinoma and targeting PTGDS for tumor suppression. Chen B; Guo L; Wang L; Wu P; Zheng X; Tan C; Xie N; Sun X; Zhou M; Huang H; Hao N; Lei Y; Yan K; Wu D; Du Y Sci Rep; 2024 Sep; 14(1):21680. PubMed ID: 39289451 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the predictive value of angiogenesis-related genes for prognosis and immunotherapy response in prostate adenocarcinoma using machine learning and experimental approaches. Wang Y; He J; Zhao Q; Bo J; Zhou Y; Sun H; Ding B; Ren M Front Immunol; 2024; 15():1416914. PubMed ID: 38817605 [TBL] [Abstract][Full Text] [Related]
6. Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy. Wang Y; Ma L; He J; Gu H; Zhu H Front Immunol; 2024; 15():1464698. PubMed ID: 39267762 [TBL] [Abstract][Full Text] [Related]
7. Identification of Prognostic Biomarkers Associated with Cancer Stem Cell Features in Prostate Adenocarcinoma. Zhang D; Zhang M; Zhang Q; Zhao Z; Nie Y Med Sci Monit; 2020 Jul; 26():e924543. PubMed ID: 32735556 [TBL] [Abstract][Full Text] [Related]
8. Novel immune-related signature for risk stratification and prognosis in prostatic adenocarcinoma. Zhao HB; Zeng YR; Han ZD; Zhuo YJ; Liang YK; Hon CT; Wan S; Wu S; Dahl D; Zhong WD; Wu CL Cancer Sci; 2021 Oct; 112(10):4365-4376. PubMed ID: 34252262 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive analysis of stearoyl-coenzyme A desaturase in prostate adenocarcinoma: insights into gene expression, immune microenvironment and tumor progression. Wang J; Ying L; Xiong H; Zhou DR; Wang YX; Che HL; Zhong ZF; Wu GS; Ge YJ Front Immunol; 2024; 15():1460915. PubMed ID: 39351232 [TBL] [Abstract][Full Text] [Related]
10. The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma. Gu CY; Dai B; Zhu Y; Lin GW; Wang HK; Ye DW; Qin XJ Mol Med; 2022 Jul; 28(1):78. PubMed ID: 35836112 [TBL] [Abstract][Full Text] [Related]
11. Integrating single-cell and bulk RNA sequencing data unveils antigen presentation and process-related CAFS and establishes a predictive signature in prostate cancer. Wang W; Li T; Xie Z; Zhao J; Zhang Y; Ruan Y; Han B J Transl Med; 2024 Jan; 22(1):57. PubMed ID: 38221616 [TBL] [Abstract][Full Text] [Related]
12. Gleason Score-related MT1L as biomarker for prognosis in prostate adenocarcinoma and contribute to tumor progression in vitro. Liu L; Li Y; Tang S; Yang B; Zhang Q; Xiao R; Hou X; Liu C; Ma L Int J Biol Markers; 2023 Jun; 38(2):114-123. PubMed ID: 37192745 [TBL] [Abstract][Full Text] [Related]
13. The Prognostic and Therapeutic Potential of Fragile X Mental Retardation 1 ( Baldi S; Amer B; Alnadari F; Al-Mogahed M; Gao Y; Gamallat Y Int J Mol Sci; 2024 Jul; 25(13):. PubMed ID: 39000397 [TBL] [Abstract][Full Text] [Related]
14. Construction of lncRNA/Pseudogene-miRNA Network Based on In Silico Approaches for Glycolysis Pathway to Identify Prostate Adenocarcinoma-Related Potential Biomarkers. Khorsand M; Mostafavi-Pour Z; Tahmasebi A; Omidvar Kordshouli S; Mousavi P Appl Biochem Biotechnol; 2024 Apr; 196(4):2332-2355. PubMed ID: 37542606 [TBL] [Abstract][Full Text] [Related]
15. Multi-omics analysis and experimental validation of the value of monocyte-associated features in prostate cancer prognosis and immunotherapy. Wang Y; Li C; He J; Zhao Q; Zhou Y; Sun H; Zhu H; Ding B; Ren M Front Immunol; 2024; 15():1426474. PubMed ID: 38947325 [TBL] [Abstract][Full Text] [Related]
16. Depiction of tumor stemlike features and underlying relationships with hazard immune infiltrations based on large prostate cancer cohorts. Zhang C; Chen T; Li Z; Liu A; Xu Y; Gao Y; Xu D Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32856039 [TBL] [Abstract][Full Text] [Related]
17. Database Mining of Genes of Prognostic Value for the Prostate Adenocarcinoma Microenvironment Using the Cancer Gene Atlas. Zhao X; Hu D; Li J; Zhao G; Tang W; Cheng H Biomed Res Int; 2020; 2020():5019793. PubMed ID: 32509861 [TBL] [Abstract][Full Text] [Related]
18. Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Zheng X; Xu H; Yi X; Zhang T; Wei Q; Li H; Ai J Mol Cancer; 2021 Dec; 20(1):160. PubMed ID: 34872584 [TBL] [Abstract][Full Text] [Related]
19. Nur77 Serves as a Potential Prognostic Biomarker That Correlates with Immune Infiltration and May Act as a Good Target for Prostate adenocarcinoma. Hu QY; Liu J; Zhang XK; Yang WT; Tao YT; Chen C; Qian YH; Tang JS; Yao XS; Xu YH; Wang JH Molecules; 2023 Jan; 28(3):. PubMed ID: 36770929 [TBL] [Abstract][Full Text] [Related]
20. Roles of m5C RNA Modification Patterns in Biochemical Recurrence and Tumor Microenvironment Characterization of Prostate Adenocarcinoma. Xu Z; Chen S; Zhang Y; Liu R; Chen M Front Immunol; 2022; 13():869759. PubMed ID: 35603206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]