These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38818926)

  • 1. Precision Basecalling of Single DNA Nucleotide from Overlapped Transmission Readouts with Machine Learning Aided Solid-State Nanogap.
    Jena MK; Mittal S; Pathak B
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29891-29901. PubMed ID: 38818926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering DNA nucleotide sequences and their rotation dynamics with interpretable machine learning integrated C
    Jena MK; Mittal S; Manna SS; Pathak B
    Nanoscale; 2023 Nov; 15(44):18080-18092. PubMed ID: 37916991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of graphene electrode functionalization on machine learning-aided single nucleotide classification.
    Rashid M; Jena MK; Mittal S; Pathak B
    Nanoscale; 2024 Nov; 16(43):20202-20215. PubMed ID: 39392717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Artificially Intelligent Nanopore for High-Throughput DNA Sequencing with a Machine-Learning-Aided Quantum-Tunneling Approach.
    Jena MK; Pathak B
    Nano Lett; 2023 Apr; 23(7):2511-2521. PubMed ID: 36799480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves.
    Maier FC; Fyta M
    Chemphyschem; 2020 Sep; 21(18):2068-2074. PubMed ID: 32721095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Aided Interpretable Approach for Single Nucleotide-Based DNA Sequencing using a Model Nanopore.
    Jena MK; Roy D; Pathak B
    J Phys Chem Lett; 2022 Dec; 13(50):11818-11830. PubMed ID: 36520020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RUBICON: a framework for designing efficient deep learning-based genomic basecallers.
    Singh G; Alser M; Denolf K; Firtina C; Khodamoradi A; Cavlak MB; Corporaal H; Mutlu O
    Genome Biol; 2024 Feb; 25(1):49. PubMed ID: 38365730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning.
    Im J; Sen S; Lindsay S; Zhang P
    ACS Nano; 2018 Jul; 12(7):7067-7075. PubMed ID: 29932668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
    Afsari S; Korshoj LE; Abel GR; Khan S; Chatterjee A; Nagpal P
    ACS Nano; 2017 Nov; 11(11):11169-11181. PubMed ID: 28968085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study.
    Zou H; Wen S; Wu X; Wong KW; Yam C
    Phys Chem Chem Phys; 2022 Mar; 24(9):5748-5754. PubMed ID: 35191434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
    Kumawat RL; Garg P; Kumar S; Pathak B
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing.
    Napieralski A; Nowak R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Step toward Amino Acid-Labeled DNA Sequencing: Boosting Transmission Sensitivity of Graphene Nanogap.
    Mittal S; Pathak B
    ACS Appl Bio Mater; 2023 Jan; 6(1):218-227. PubMed ID: 36524773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods.
    Kumawat RL; Jena MK; Mittal S; Pathak B
    Small; 2024 Sep; 20(36):e2401112. PubMed ID: 38716623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Conductive Nucleotide Analogue Facilitates Base-Calling in Quantum-Tunneling-Based DNA Sequencing.
    Furuhata T; Ohshiro T; Akimoto G; Ueki R; Taniguchi M; Sando S
    ACS Nano; 2019 May; 13(5):5028-5035. PubMed ID: 30888791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Assisted Direct RNA Sequencing with Epigenetic RNA Modification Detection via Quantum Tunneling.
    Mittal S; Jena MK; Pathak B
    Anal Chem; 2024 Jul; 96(28):11516-11524. PubMed ID: 38874444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognizing nucleotides by cross-tunneling currents for DNA sequencing.
    Bagci VM; Kaun CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011917. PubMed ID: 21867223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.