These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 38819382)

  • 1. Guidelines for in vivo models of developmental programming of cardiovascular disease risk.
    Warrington JP; Collins HE; Davidge ST; do Carmo JM; Goulopoulou S; Intapad S; Loria AS; Sones JL; Wold LE; Zinkhan EK; Alexander BT
    Am J Physiol Heart Circ Physiol; 2024 Jul; 327(1):H221-H241. PubMed ID: 38819382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The transgenerational mechanisms in developmental programming of metabolic diseases].
    Zambrano E
    Rev Invest Clin; 2009; 61(1):41-52. PubMed ID: 19507474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia.
    Aljunaidy MM; Morton JS; Kirschenman R; Phillips T; Case CP; Cooke CM; Davidge ST
    Pharmacol Res; 2018 Aug; 134():332-342. PubMed ID: 29778808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Estrogen in Gender-dependent Fetal Programming of Adult Cardiovascular Dysfunction.
    Chen Z; Wang L; Ke J; Xiao D
    Curr Vasc Pharmacol; 2019; 17(2):147-152. PubMed ID: 29493455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms linking exposure to preeclampsia
    Andraweera PH; Gatford KL; Care AS; Bianco-Miotto T; Lassi ZS; Dekker GA; Arstall M; Roberts CT
    J Dev Orig Health Dis; 2020 Jun; 11(3):235-242. PubMed ID: 32070456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In utero programming and early detection of cardiovascular disease in the offspring of mothers with obesity.
    Van De Maele K; Devlieger R; Gies I
    Atherosclerosis; 2018 Aug; 275():182-195. PubMed ID: 29929107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risks of cause-specific mortality in offspring of pregnancies complicated by hypertensive disease of pregnancy.
    Hammad IA; Meeks H; Fraser A; Theilen LH; Esplin MS; Smith KR; Varner MW
    Am J Obstet Gynecol; 2020 Jan; 222(1):75.e1-75.e9. PubMed ID: 31336073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rat model to study maternal depression during pregnancy and postpartum periods, its comorbidity with cardiovascular diseases and neurodevelopmental impact in the offspring.
    Czarzasta K; Makowska-Zubrycka M; Kasarello K; Skital VM; Tyszkowska K; Matusik K; Jesion A; Wojciechowska M; Segiet A; Wrzesien R; Biały M; Krzascik P; Wisłowska-Stanek A; Sajdel-Sulkowska EM
    Physiol Behav; 2019 Feb; 199():258-264. PubMed ID: 30465806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of maternal dysmetabolic conditions during pregnancy on cardiovascular disease.
    Palinski W; Nicolaides E; Liguori A; Napoli C
    J Cardiovasc Transl Res; 2009 Sep; 2(3):277-85. PubMed ID: 19655024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fetal programming of CVD and renal disease: animal models and mechanistic considerations.
    Langley-Evans SC
    Proc Nutr Soc; 2013 Aug; 72(3):317-25. PubMed ID: 23312451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal programming and the risk of noncommunicable disease.
    Fall CH
    Indian J Pediatr; 2013 Mar; 80 Suppl 1(0 1):S13-20. PubMed ID: 22829248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age.
    Cooke CM; Shah A; Kirschenman RD; Quon AL; Morton JS; Care AS; Davidge ST
    J Physiol; 2018 Dec; 596(23):5807-5821. PubMed ID: 29882308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming.
    Liu L; Wen Y; Ni Q; Chen L; Wang H
    Biol Res; 2023 Nov; 56(1):61. PubMed ID: 37978540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease.
    Oulerich Z; Sferruzzi-Perri AN
    Am J Physiol Renal Physiol; 2024 Jul; 327(1):F21-F36. PubMed ID: 38695077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of fetal programming for cardiovascular disease in adulthood.
    Leach L; Mann GE
    Microcirculation; 2011 May; 18(4):253-5. PubMed ID: 21418386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental programming of peripheral diseases in offspring exposed to maternal obesity during pregnancy.
    Shrestha N; Ezechukwu HC; Holland OJ; Hryciw DH
    Am J Physiol Regul Integr Comp Physiol; 2020 Nov; 319(5):R507-R516. PubMed ID: 32877239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional programming of disease: unravelling the mechanism.
    Langley-Evans SC
    J Anat; 2009 Jul; 215(1):36-51. PubMed ID: 19175805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic processes during preeclampsia and effects on fetal development and chronic health.
    Ashraf UM; Hall DL; Rawls AZ; Alexander BT
    Clin Sci (Lond); 2021 Oct; 135(19):2307-2327. PubMed ID: 34643675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal models that elucidate basic principles of the developmental origins of adult diseases.
    Nathanielsz PW
    ILAR J; 2006; 47(1):73-82. PubMed ID: 16391433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fetal programming of cardiovascular disease: new causes and underlying mechanisms].
    Sartori C; Rexhaj E; Rimoldi SF; Allemann Y; Scherrer U
    Rev Med Suisse; 2012 Sep; 8(353):1716, 1718-24. PubMed ID: 23029985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.