These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 38819419)
1. Radiomics and Clinical Characters Based Gaussian Naive Bayes (GNB) Model for Preoperative Differentiation of Pulmonary Pure Invasive Mucinous Adenocarcinoma From Mixed Mucinous Adenocarcinoma. Zhang J; Hao L; Xu Q; Gao F Technol Cancer Res Treat; 2024; 23():15330338241258415. PubMed ID: 38819419 [No Abstract] [Full Text] [Related]
2. Radiomics nomogram for preoperative differentiation of pulmonary mucinous adenocarcinoma from tuberculoma in solitary pulmonary solid nodules. Zhang J; Hao L; Qi M; Xu Q; Zhang N; Feng H; Shi G BMC Cancer; 2023 Mar; 23(1):261. PubMed ID: 36944978 [TBL] [Abstract][Full Text] [Related]
3. CT Radiomics Combined With Clinicopathological Features to Predict Invasive Mucinous Adenocarcinoma in Patients With Lung Adenocarcinoma. Zhang J; Hao L; Li M; Xu Q; Shi G Technol Cancer Res Treat; 2023; 22():15330338231174306. PubMed ID: 37278046 [No Abstract] [Full Text] [Related]
4. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
5. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
6. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
7. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
8. Combined CT-Based Radiomics and Clinic-Radiological Characteristics for Preoperative Differentiation of Solitary-Type Invasive Mucinous and Non-Mucinous Lung Adenocarcinoma. Hong R; Ping X; Liu Y; Feng F; Hu S; Hu C Int J Gen Med; 2024; 17():4267-4279. PubMed ID: 39324145 [TBL] [Abstract][Full Text] [Related]
9. The CT delta-radiomics based machine learning approach in evaluating multiple primary lung adenocarcinoma. Ma Y; Li J; Xu X; Zhang Y; Lin Y BMC Cancer; 2022 Sep; 22(1):949. PubMed ID: 36057553 [TBL] [Abstract][Full Text] [Related]
10. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
11. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related]
12. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a preoperative CT‑based radiomics nomogram to differentiate tuberculosis granulomas from lung adenocarcinomas: an external validation study. Yang L; Jiang Z; Tong J; Li N; Dong Q; Wang K BMC Cancer; 2024 Jun; 24(1):670. PubMed ID: 38824514 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models. Xiong S; Fu Z; Deng Z; Li S; Zhan X; Zheng F; Yang H; Liu X; Xu S; Liu H; Fan B; Dong W; Song Y; Fu B Med Phys; 2024 Sep; 51(9):5965-5977. PubMed ID: 38977273 [TBL] [Abstract][Full Text] [Related]
15. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
16. Combined model of radiomics and clinical features for differentiating pneumonic-type mucinous adenocarcinoma from lobar pneumonia: An exploratory study. Ji H; Liu Q; Chen Y; Gu M; Chen Q; Guo S; Ning S; Zhang J; Li WH Front Endocrinol (Lausanne); 2022; 13():997921. PubMed ID: 36726465 [TBL] [Abstract][Full Text] [Related]
17. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. Xie Q; Chen Y; Hu Y; Zeng F; Wang P; Xu L; Wu J; Li J; Zhu J; Xiang M; Zeng F BMC Med Imaging; 2022 Aug; 22(1):140. PubMed ID: 35941568 [TBL] [Abstract][Full Text] [Related]
19. [Clinical value of a differentiation prediction model for invasive lung adenocarcinoma]. Shan WL; Kong D; Zhang H; Zhang JD; Duan SF; Guo LL Zhonghua Zhong Liu Za Zhi; 2022 Jul; 44(7):767-775. PubMed ID: 35880343 [No Abstract] [Full Text] [Related]
20. A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma. Xing X; Li L; Sun M; Zhu X; Feng Y Ther Adv Respir Dis; 2024; 18():17534666241249168. PubMed ID: 38757628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]