BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38819435)

  • 1. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes.
    Ishraaq R; Das S
    Chem Commun (Camb); 2024 Jun; 60(48):6093-6129. PubMed ID: 38819435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.
    Pial TH; Das S
    J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning enabled quantification of the hydrogen bonds inside the polyelectrolyte brush layer probed using all-atom molecular dynamics simulations.
    Pial TH; Das S
    Soft Matter; 2022 Dec; 18(47):8945-8951. PubMed ID: 36421980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-atom molecular dynamics simulations of weak polyionic brushes: influence of charge density on the properties of polyelectrolyte chains, brush-supported counterions, and water molecules.
    Sachar HS; Pial TH; Chava BS; Das S
    Soft Matter; 2020 Aug; 16(33):7808-7822. PubMed ID: 32747883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.
    Pial TH; Sachar HS; Desai PR; Das S
    ACS Nano; 2021 Apr; 15(4):6507-6516. PubMed ID: 33797221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte brushes: theory, modelling, synthesis and applications.
    Das S; Banik M; Chen G; Sinha S; Mukherjee R
    Soft Matter; 2015 Nov; 11(44):8550-83. PubMed ID: 26399305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophilic and Apolar Hydration in Densely Grafted Cationic Brushes and Counterions with Large Mobilities.
    Ishraaq R; Akash TS; Bera A; Das S
    J Phys Chem B; 2024 Jan; 128(1):381-392. PubMed ID: 38148252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer brushes for friction control: Contributions of molecular simulations.
    Abdelbar MA; Ewen JP; Dini D; Angioletti-Uberti S
    Biointerphases; 2023 Jan; 18(1):010801. PubMed ID: 36653299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.
    Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A
    Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects.
    Chen G; Das S
    J Phys Chem B; 2016 Jul; 120(27):6848-57. PubMed ID: 27322913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Counterion Valence on Conformational Behavior of Spherical Polyelectrolyte Brushes Confined between Two Parallel Walls.
    Li L; Cao Q; Zuo C
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counterion valence-induced tunnel formation in a system of polyelectrolyte brushes grafted on two apposing walls.
    Yang J; Cao D
    J Phys Chem B; 2009 Aug; 113(34):11625-31. PubMed ID: 19655707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tribological Behavior of Grafted Nanoparticle on Polymer-Brushed Walls: A Dissipative Particle Dynamics Study.
    Nguyen VP; Phi PQ; Choi ST
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11988-11998. PubMed ID: 30821436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical polyelectrolyte brushes in the presence of multivalent counterions: the effect of fluctuations and correlations as determined by molecular dynamics simulations.
    Mei Y; Hoffmann M; Ballauff M; Jusufi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031805. PubMed ID: 18517412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the monomer density of grafted polyelectrolyte brushes and their interactions.
    Manciu M; Ruckenstein E
    Langmuir; 2004 Sep; 20(19):8155-64. PubMed ID: 15350087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.