These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38819435)

  • 21. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular Structures Generated by Spherical Polyelectrolyte Brushes and their Application in Catalysis.
    Lu Y; Wittemann A; Ballauff M
    Macromol Rapid Commun; 2009 May; 30(9-10):806-15. PubMed ID: 21706663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Maheedhara RS; Sachar HS; Jing H; Das S
    J Phys Chem B; 2018 Jul; 122(29):7450-7461. PubMed ID: 29969567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between planar stiff polyelectrolyte brushes.
    Wynveen A; Likos CN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):010801. PubMed ID: 19658643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical self-consistent field theory study of the response of strong polyelectrolyte brushes to external electric fields.
    Tong C
    J Chem Phys; 2015 Aug; 143(5):054903. PubMed ID: 26254666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains.
    Sandberg DJ; Carrillo JM; Dobrynin AV
    Langmuir; 2007 Dec; 23(25):12716-28. PubMed ID: 17973411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient?
    Smook LA; de Beer S
    Langmuir; 2024 Feb; 40(8):4142-4151. PubMed ID: 38355408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical and spectroscopic investigation of counterions exchange in polyelectrolyte brushes.
    Combellas C; Kanoufi F; Sanjuan S; Slim C; Tran Y
    Langmuir; 2009 May; 25(9):5360-70. PubMed ID: 19358586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer Brushes: Efficient Synthesis and Applications.
    Feng C; Huang X
    Acc Chem Res; 2018 Sep; 51(9):2314-2323. PubMed ID: 30137964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions.
    Hao QH; Xia G; Tan HG; Chen EQ; Yang S
    Phys Chem Chem Phys; 2018 Nov; 20(41):26542-26551. PubMed ID: 30306970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Chen G; Das S
    J Phys Chem B; 2017 Apr; 121(14):3130-3141. PubMed ID: 28322562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the Role of Electrostatic Forces on Attraction between Opposing Polyelectrolyte Brushes.
    Prusty D; Gallegos A; Wu J
    Langmuir; 2024 Jan; 40(4):2064-2078. PubMed ID: 38236763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Giant Hyaluronan Polymer Brushes Display Polyelectrolyte Brush Polymer Physics Behavior.
    Faubel JL; Patel RP; Wei W; Curtis JE; Brettmann BK
    ACS Macro Lett; 2019 Oct; 8(10):1323-1327. PubMed ID: 35651165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory and molecular dynamics simulations.
    Desai PR; Sinha S; Das S
    Phys Rev E; 2018 Mar; 97(3-1):032503. PubMed ID: 29776032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces.
    Besford QA; Schubotz S; Chae S; Özdabak Sert AB; Weiss ACG; Auernhammer GK; Uhlmann P; Farinha JPS; Fery A
    Molecules; 2022 May; 27(9):. PubMed ID: 35566393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic specific effects on the structure, mechanics and interfacial softness of a polyelectrolyte brush.
    Rodríguez-Ropero F; van der Vegt NF
    Faraday Discuss; 2013; 160():297-309; discussion 311-27. PubMed ID: 23795507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.