These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Tuning and transferring slow photons from TiO Madanu TL; Mouchet SR; Deparis O; Liu J; Li Y; Su BL J Colloid Interface Sci; 2023 Mar; 634():290-299. PubMed ID: 36535165 [TBL] [Abstract][Full Text] [Related]
8. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity. Sun Y; Zhang Z; Xie A; Xiao C; Li S; Huang F; Shen Y Nanoscale; 2015 Sep; 7(33):13974-80. PubMed ID: 26228490 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Photoelectrochemical Water Splitting Behaviour of Tuned Band Gap CdSe QDs Sensitized LaB₆. Babu MS; Sivanantham A; Chakravarthi BB; Kannan RS; Panda SK; Berchmans LJ; Arya SB; Sreedhar G J Nanosci Nanotechnol; 2017 Jan; 17(1):437-42. PubMed ID: 29624295 [TBL] [Abstract][Full Text] [Related]
10. CsPbBr Zhu Y; Tong X; Song H; Wang Y; Qiao Z; Qiu D; Huang J; Lu Z Dalton Trans; 2018 Jul; 47(30):10057-10062. PubMed ID: 29985500 [TBL] [Abstract][Full Text] [Related]
11. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767 [TBL] [Abstract][Full Text] [Related]
12. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Collins G; Armstrong E; McNulty D; O'Hanlon S; Geaney H; O'Dwyer C Sci Technol Adv Mater; 2016; 17(1):563-582. PubMed ID: 27877904 [TBL] [Abstract][Full Text] [Related]
13. Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting. Ran L; Qiu S; Zhai P; Li Z; Gao J; Zhang X; Zhang B; Wang C; Sun L; Hou J J Am Chem Soc; 2021 May; 143(19):7402-7413. PubMed ID: 33961743 [TBL] [Abstract][Full Text] [Related]
14. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Cheng C; Karuturi SK; Liu L; Liu J; Li H; Su LT; Tok AI; Fan HJ Small; 2012 Jan; 8(1):37-42. PubMed ID: 22009604 [TBL] [Abstract][Full Text] [Related]
15. PbS Quantum Dots-Decorated BiVO Seo JW; Ha SB; Song IC; Kim JY Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903678 [TBL] [Abstract][Full Text] [Related]
16. Highly stable photoelectrochemical cells for hydrogen production using a SnO Basu K; Zhang H; Zhao H; Bhattacharya S; Navarro-Pardo F; Datta PK; Jin L; Sun S; Vetrone F; Rosei F Nanoscale; 2018 Aug; 10(32):15273-15284. PubMed ID: 30067257 [TBL] [Abstract][Full Text] [Related]
17. Heterostructured WO Alruwaili M; Roy A; Alhabradi M; Yang X; Chang H; Tahir AA Heliyon; 2024 Feb; 10(3):e25446. PubMed ID: 38322971 [TBL] [Abstract][Full Text] [Related]
18. g-C Yu J; Zhou L; Lei J; Wang L; Zhang J; Liu Y Chem Asian J; 2018 Nov; 13(21):3261-3267. PubMed ID: 30141258 [TBL] [Abstract][Full Text] [Related]
19. Plasmon-Sensitized Graphene/TiO Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225 [TBL] [Abstract][Full Text] [Related]
20. Light concentration and electron transfer in plasmonic-photonic Ag,Au modified Mo-BiVO Pylarinou M; Sakellis E; Tsipas P; Gardelis S; Psycharis V; Dimoulas A; Stergiopoulos T; Likodimos V Nanoscale; 2024 May; 16(21):10366-10376. PubMed ID: 38739078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]