These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38819600)

  • 1. Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries.
    Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202403618. PubMed ID: 38819600
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward High-Performance Lithium-Sulfur Batteries: Efficient Anchoring and Catalytic Conversion of Polysulfides Using P-Doped Carbon Foam.
    Zou Y; Guo D; Yang B; Zhou L; Lin P; Wang J; Chen X; Wang S
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50093-50100. PubMed ID: 34649425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions.
    Chu H; Noh H; Kim YJ; Yuk S; Lee JH; Lee J; Kwack H; Kim Y; Yang DK; Kim HT
    Nat Commun; 2019 Jan; 10(1):188. PubMed ID: 30643115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture and Performance of the Novel Sulfur Host Material Based on Ti
    Zeng P; Chen M; Jiang S; Li Y; Xie X; Liu H; Hu X; Wu C; Shu H; Wang X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22439-22448. PubMed ID: 31149803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically Stable Rechargeable Lithium-Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film.
    Chiu LL; Chung SH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Sulfur-Rich Copolymer@CNT Hybrid Cathode with Dual-Confinement of Polysulfides for High-Performance Lithium-Sulfur Batteries.
    Hu G; Sun Z; Shi C; Fang R; Chen J; Hou P; Liu C; Cheng HM; Li F
    Adv Mater; 2017 Mar; 29(11):. PubMed ID: 28036126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery.
    Chen W; Lei T; Lv W; Hu Y; Yan Y; Jiao Y; He W; Li Z; Yan C; Xiong J
    Adv Mater; 2018 Aug; ():e1804084. PubMed ID: 30141197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries.
    Li B; Xu H; Ma Y; Yang S
    Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New High Donor Electrolyte for Lithium-Sulfur Batteries.
    Baek M; Shin H; Char K; Choi JW
    Adv Mater; 2020 Dec; 32(52):e2005022. PubMed ID: 33184954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium-sulfur batteries: a first-principles study.
    Liu J; Li M; Zhang X; Zhang Q; Yan J; Wu Y
    Phys Chem Chem Phys; 2019 Jul; 21(30):16435-16443. PubMed ID: 31086879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li
    Perez Beltran S; Balbuena PB
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):491-502. PubMed ID: 33377389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fence-Type Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries.
    Wang Z; Zhu H; Jiang J; Dong M; Meng F; Ke J; Ji H; Xu L; Li G; Fu Y; Liu Q; Xue Z; Ji Q; Zhu J; Lan S
    Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410823. PubMed ID: 39034916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakening the Solvating Power of Solvents to Encapsulate Lithium Polysulfides Enables Long-Cycling Lithium-Sulfur Batteries.
    Hou LP; Li Z; Yao N; Bi CX; Li BQ; Chen X; Zhang XQ; Zhang Q
    Adv Mater; 2022 Nov; 34(45):e2205284. PubMed ID: 36085249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries.
    Yang H; Guo C; Chen J; Naveed A; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):791-795. PubMed ID: 30426649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Phosphide Nanoflake-Induced Flower-like Sulfur for High Redox Kinetics and Fast Ion Transfer in Lithium-Sulfur Batteries.
    Qi C; Li Z; Sun C; Chen C; Jin J; Wen Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49626-49635. PubMed ID: 33080137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries.
    Wang T; He J; Zhu Z; Cheng XB; Zhu J; Lu B; Wu Y
    Adv Mater; 2023 Nov; 35(47):e2303520. PubMed ID: 37254027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous FeNi Prussian blue cubes derived carbon-based phosphides as superior sulfur hosts for high-performance lithium-sulfur batteries.
    Zhang Y; Wei D; Liu Y; Li S; Lei W; He X; Qiao M
    Nanotechnology; 2024 Mar; 35(23):. PubMed ID: 38497442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.