These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38820036)

  • 1. Research on exoskeleton compliance control strategy based on dual interaction torque split phase control method.
    Liao L; Zhang G; Hu M
    Technol Health Care; 2024; 32(5):3363-3381. PubMed ID: 38820036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-exoskeleton interaction portrait.
    Shushtari M; Foellmer J; Arami A
    J Neuroeng Rehabil; 2024 Sep; 21(1):152. PubMed ID: 39232812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints.
    McGrath RL; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking.
    Park JH; Lee Y; Madinei S; Kim S; Nussbaum MA; Srinivasan D
    Ann Biomed Eng; 2022 Aug; 50(8):964-977. PubMed ID: 35478066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-in-the-Loop Optimization of Knee Exoskeleton Assistance for Minimizing User's Metabolic and Muscular Effort.
    Monteiro S; Figueiredo J; Fonseca P; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons.
    Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.