These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38820050)

  • 1. Solvation Structures and Transport Mechanisms of Cations in Water-in-Bisalt Electrolytes for High-Concentration Lithium-Ion Batteries Revealed by Molecular Dynamics Simulations.
    Khammari A; Jeon J; Cho M
    J Phys Chem B; 2024 Jun; 128(23):5735-5745. PubMed ID: 38820050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes.
    Kim J; Koo B; Khammari A; Park K; Lee H; Kwak K; Cho M
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10033-10041. PubMed ID: 38373218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries.
    Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C
    Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries.
    Wang Y; Meng X; Sun J; Liu Y; Hou L
    Front Chem; 2020; 8():595. PubMed ID: 32850632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Water-in-Salt Electrolyte for Room-Temperature Fluoride-Ion Batteries Based on a Hydrophobic-Hydrophilic Salt.
    Zou P; Wang C; He Y; Xin HL; Lin R
    Nano Lett; 2024 May; 24(18):5429-5435. PubMed ID: 38682885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-in-Salt Electrolytes.
    Yu Z; Curtiss LA; Winans RE; Zhang Y; Li T; Cheng L
    J Phys Chem Lett; 2020 Feb; 11(4):1276-1281. PubMed ID: 31951143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Relaxation in "Water-in-Salt" and "Water-in-Bisalt" Electrolytes.
    González MA; Borodin O; Kofu M; Shibata K; Yamada T; Yamamuro O; Xu K; Price DL; Saboungi ML
    J Phys Chem Lett; 2020 Sep; 11(17):7279-7284. PubMed ID: 32787289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upgrading Gel Electrolytes Through Electrostatic-Induced Dual-Salt Paradigm for Superior Zn-Ion Battery Performance.
    Wu J; Li M; Ding X; Chen Z; Luo J; Zhang Q; Qiu Y; Wang Q; Liu W; Yang C
    Small; 2024 May; ():e2400390. PubMed ID: 38778736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries.
    Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X
    Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.
    Suo L; Borodin O; Sun W; Fan X; Yang C; Wang F; Gao T; Ma Z; Schroeder M; von Cresce A; Russell SM; Armand M; Angell A; Xu K; Wang C
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7136-41. PubMed ID: 27120336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chain-like Structures Facilitate Li
    Zhang M; Gao Y; Fu L; Bai Y; Mukherjee S; Chen CL; Liu J; Bian H; Fang Y
    J Phys Chem Lett; 2023 Aug; 14(31):6968-6976. PubMed ID: 37506173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-in-Salt Gel Biopolymer Electrolytes for Flexible and Wearable Zn/Alkali Metal Dual-Ion Batteries.
    Kasprzak D; Wu Z; Tao L; Xu J; Zhang Y; Liu J
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36304-36314. PubMed ID: 38935891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes-OTf vs TFSI.
    Li K; Subasinghege Don V; Gupta CS; David R; Kumar R
    J Chem Phys; 2021 May; 154(18):184505. PubMed ID: 34241024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics.
    Callsen M; Sodeyama K; Futera Z; Tateyama Y; Hamada I
    J Phys Chem B; 2017 Jan; 121(1):180-188. PubMed ID: 27997213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries.
    Mabuchi T; Nakajima K; Tokumasu T
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Zwitterionic Additives on Solvation and Transport of Sodium and Potassium Cations in (Ethylene Oxide)
    Nguyen MT; Duan Y; Shao Q
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.