These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38820290)

  • 21. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding.
    Chan KY; Grünbaum D; O'Donnell MJ
    J Exp Biol; 2011 Nov; 214(Pt 22):3857-67. PubMed ID: 22031751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HETEROCHRONIC DEVELOPMENTAL PLASTICITY IN LARVAL SEA URCHINS AND ITS IMPLICATIONS FOR EVOLUTION OF NONFEEDING LARVAE.
    Strathmann RR; Fenaux L; Strathmann MF
    Evolution; 1992 Aug; 46(4):972-986. PubMed ID: 28564401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Swimming performance in early development and the "other" consequences of egg size for ciliated planktonic larvae.
    McDonald KA; Grünbaum D
    Integr Comp Biol; 2010 Oct; 50(4):589-605. PubMed ID: 21558226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of selfing on offspring survival and reproduction in a colonial simultaneous hermaphrodite (Bugula stolonifera, Bryozoa).
    Johnson CH
    Biol Bull; 2010 Aug; 219(1):27-37. PubMed ID: 20813987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei.
    Bennett KC; Young CM; Emlet RB
    Biol Bull; 2012 Apr; 222(2):105-17. PubMed ID: 22589401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the echinoid Clypeaster rosaceus.
    Zigler KS; Raff RA
    Biol Bull; 2013 Aug; 224(3):192-9. PubMed ID: 23995743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778).
    Sarifudin M; Rahman MA; Yusoff FM; Arshad A; Tan SG
    J Environ Biol; 2016 Jul; 37(4 Spec No):657-68. PubMed ID: 28779724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endogenous thyroid hormone synthesis in facultative planktotrophic larvae of the sand dollar Clypeaster rosaceus: implications for the evolutionary loss of larval feeding.
    Heyland A; Reitzel AM; Price DA; Moroz LL
    Evol Dev; 2006; 8(6):568-79. PubMed ID: 17073939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The dopamine effect on sea urchin larvae depends on their age.
    Kalachev AV; Tankovich AE
    Dev Growth Differ; 2023 Feb; 65(2):120-131. PubMed ID: 36645274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis.
    Bishop CD; Brandhorst BP
    Dev Dyn; 2007 Jun; 236(6):1535-46. PubMed ID: 17474125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.
    Saito M; Seki M; Amemiya S; Yamasu K; Suyemitsu T; Ishihara K
    Dev Growth Differ; 1998 Jun; 40(3):307-12. PubMed ID: 9639358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reproduction: widespread cloning in echinoderm larvae.
    Eaves AA; Palmer AR
    Nature; 2003 Sep; 425(6954):146. PubMed ID: 12968170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of the adult rudiment of sea urchins is influenced by thyroid hormones.
    Chino Y; Saito M; Yamasu K; Suyemitsu T; Ishihara K
    Dev Biol; 1994 Jan; 161(1):1-11. PubMed ID: 8293866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofouling and antifouling.
    Fusetani N
    Nat Prod Rep; 2004 Feb; 21(1):94-104. PubMed ID: 15039837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M; Dupont S; Thorndyke MC; Melzner F
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.
    Warne RW; Crespi EJ
    J Exp Zool A Ecol Genet Physiol; 2015 Mar; 323(3):191-201. PubMed ID: 25676342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Larval morphology of the bryozoan Watersipora arcuata (Cheilostomata: Ascophora).
    Zimmer RL; Woollacott RM
    J Morphol; 1989 Feb; 199(2):125-150. PubMed ID: 29865631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M; Wren J; Melzner F; Thorndyke MC; Dupont ST
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):331-40. PubMed ID: 21742050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate.
    Giménez L
    Ecology; 2010 May; 91(5):1401-13. PubMed ID: 20503872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles.
    Bishop CD; Brandhorst BP
    Evol Dev; 2003; 5(5):542-50. PubMed ID: 12950632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.