These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38820436)

  • 21. A systematic observation of vasodynamics from different segments along the cerebral vasculature in the penumbra zone of awake mice following cerebral ischemia and recanalization.
    Qiu B; Zhao Z; Wang N; Feng Z; Chen XJ; Chen W; Sun W; Ge WP; Wang Y
    J Cereb Blood Flow Metab; 2023 May; 43(5):665-679. PubMed ID: 36524693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach.
    Mitsui R; Hashitani H
    Pflugers Arch; 2016 Feb; 468(2):279-91. PubMed ID: 26530829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing Hypermuscularization of the Transitional Segment Between Arterioles and Capillaries Protects Against Spontaneous Intracerebral Hemorrhage.
    Ratelade J; Klug NR; Lombardi D; Angelim MKSC; Dabertrand F; Domenga-Denier V; Al-Shahi Salman R; Smith C; Gerbeau JF; Nelson MT; Joutel A
    Circulation; 2020 Jun; 141(25):2078-2094. PubMed ID: 32183562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phentolamine suppresses the increase in arteriolar vasomotion frequency due to systemic hypoxia in hamster skeletal muscle microcirculation.
    Colantuoni A; Bertuglia S; Marchiafava PL
    Auton Neurosci; 2001 Jul; 90(1-2):148-51. PubMed ID: 11485284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasomotion and underlying mechanisms in small arteries. An in vitro study of rat blood vessels.
    Gustafsson H
    Acta Physiol Scand Suppl; 1993; 614():1-44. PubMed ID: 8128886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous vasomotion in hamster cheek pouch arterioles in varying experimental conditions.
    Bouskela E; Grampp W
    Am J Physiol; 1992 Feb; 262(2 Pt 2):H478-85. PubMed ID: 1539706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological basis of arteriolar vasomotion in vivo.
    Bartlett IS; Crane GJ; Neild TO; Segal SS
    J Vasc Res; 2000; 37(6):568-75. PubMed ID: 11146411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective diameter as a determinant of local vascular resistance in presence of vasomotion.
    Slaaf DW; Vrielink HH; Tangelder GJ; Reneman RS
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1240-3. PubMed ID: 3189582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of vasomotion in hippocampal cerebral arterioles during increases in neuronal activity.
    Brown LA; Key BJ; Lovick TA
    Auton Neurosci; 2002 Jan; 95(1-2):137-40. PubMed ID: 11871779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension.
    Boegehold MA
    Microvasc Res; 1993 Jan; 45(1):83-94. PubMed ID: 8479344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Astrocytes regulate ultra-slow arteriole oscillations via stretch-mediated TRPV4-COX-1 feedback.
    Haidey JN; Peringod G; Institoris A; Gorzo KA; Nicola W; Vandal M; Ito K; Liu S; Fielding C; Visser F; Nguyen MD; Gordon GR
    Cell Rep; 2021 Aug; 36(5):109405. PubMed ID: 34348138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of a calcium antagonist and of the adrenergic system on spontaneous vasomotion and mean arteriolar diameter in the hamster cheek pouch: influence of buflomedil.
    Bouskela E; Cyrino FZ
    Int J Microcirc Clin Exp; 1997; 17(4):164-74. PubMed ID: 9378566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels.
    Welsh DG; Jackson WF; Segal SS
    Am J Physiol; 1998 Jun; 274(6):H2018-24. PubMed ID: 9841528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arteriolar smooth muscle Ca2+ dynamics during blood flow control in hamster cheek pouch.
    Brekke JF; Jackson WF; Segal SS
    J Appl Physiol (1985); 2006 Jul; 101(1):307-15. PubMed ID: 16455810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage independence of vasomotion in isolated irideal arterioles of the rat.
    Haddock RE; Hirst GD; Hill CE
    J Physiol; 2002 Apr; 540(Pt 1):219-29. PubMed ID: 11927681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of L-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters.
    Bertuglia S; Colantuoni A; Intaglietta M
    Microvasc Res; 1994 Jul; 48(1):68-84. PubMed ID: 7990724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the endothelium on arterial vasomotion.
    Koenigsberger M; Sauser R; Bény JL; Meister JJ
    Biophys J; 2005 Jun; 88(6):3845-54. PubMed ID: 15792979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vasomotion in cerebral microcirculation of awake rabbits.
    Hundley WG; Renaldo GJ; Levasseur JE; Kontos HA
    Am J Physiol; 1988 Jan; 254(1 Pt 2):H67-71. PubMed ID: 3337261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitric oxide suppresses cerebral vasomotion by sGC-independent effects on ryanodine receptors and voltage-gated calcium channels.
    Yuill KH; McNeish AJ; Kansui Y; Garland CJ; Dora KA
    J Vasc Res; 2010; 47(2):93-107. PubMed ID: 19729956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of insulin and the combination of insulin plus metformin (glucophage) on microvascular reactivity in control and diabetic hamsters.
    Bouskela E; Cyrino FZ; Wiernsperger N
    Angiology; 1997 Jun; 48(6):503-14. PubMed ID: 9194536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.