These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis. Osvatic JT; Yuen B; Kunert M; Wilkins L; Hausmann B; Girguis P; Lundin K; Taylor J; Jospin G; Petersen JM ISME J; 2023 Mar; 17(3):453-466. PubMed ID: 36639537 [TBL] [Abstract][Full Text] [Related]
3. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Petersen JM; Kemper A; Gruber-Vodicka H; Cardini U; van der Geest M; Kleiner M; Bulgheresi S; Mußmann M; Herbold C; Seah BK; Antony CP; Liu D; Belitz A; Weber M Nat Microbiol; 2016 Oct; 2(1):16195. PubMed ID: 27775707 [TBL] [Abstract][Full Text] [Related]
4. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Osvatic JT; Wilkins LGE; Leibrecht L; Leray M; Zauner S; Polzin J; Camacho Y; Gros O; van Gils JA; Eisen JA; Petersen JM; Yuen B Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272286 [TBL] [Abstract][Full Text] [Related]
5. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Ratinskaia L; Malavin S; Zvi-Kedem T; Vintila S; Kleiner M; Rubin-Blum M ISME Commun; 2024 Jan; 4(1):ycae076. PubMed ID: 38873029 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. König S; Gros O; Heiden SE; Hinzke T; Thürmer A; Poehlein A; Meyer S; Vatin M; Mbéguié-A-Mbéguié D; Tocny J; Ponnudurai R; Daniel R; Becher D; Schweder T; Markert S Nat Microbiol; 2016 Oct; 2():16193. PubMed ID: 27775698 [TBL] [Abstract][Full Text] [Related]
7. Extensive Thioautotrophic Gill Endosymbiont Diversity within a Single Lim SJ; Alexander L; Engel AS; Paterson AT; Anderson LC; Campbell BJ mSystems; 2019 Aug; 4(4):. PubMed ID: 31455638 [TBL] [Abstract][Full Text] [Related]
9. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Petersen JM; Yuen B Appl Environ Microbiol; 2021 Mar; 87(5):. PubMed ID: 33355107 [TBL] [Abstract][Full Text] [Related]
10. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. Russell SL; Pepper-Tunick E; Svedberg J; Byrne A; Ruelas Castillo J; Vollmers C; Beinart RA; Corbett-Detig R PLoS Genet; 2020 Aug; 16(8):e1008935. PubMed ID: 32841233 [TBL] [Abstract][Full Text] [Related]
11. Evidence for homologous recombination in intracellular chemosynthetic clam symbionts. Stewart FJ; Young CR; Cavanaugh CM Mol Biol Evol; 2009 Jun; 26(6):1391-404. PubMed ID: 19289597 [TBL] [Abstract][Full Text] [Related]
12. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Perez M; Breusing C; Angers B; Beinart RA; Won YJ; Young CR Proc Biol Sci; 2022 Mar; 289(1970):20212137. PubMed ID: 35259985 [TBL] [Abstract][Full Text] [Related]
13. Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Stewart FJ; Young CR; Cavanaugh CM Mol Biol Evol; 2008 Apr; 25(4):673-87. PubMed ID: 18192696 [TBL] [Abstract][Full Text] [Related]
14. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. Di Cesare A; Cabello-Yeves PJ; Chrismas NAM; Sánchez-Baracaldo P; Salcher MM; Callieri C BMC Genomics; 2018 Apr; 19(1):259. PubMed ID: 29661139 [TBL] [Abstract][Full Text] [Related]
15. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287 [TBL] [Abstract][Full Text] [Related]
16. Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts. Fontanez KM; Cavanaugh CM Environ Microbiol; 2014 Dec; 16(12):3608-21. PubMed ID: 24428587 [TBL] [Abstract][Full Text] [Related]
17. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Gros O; Elisabeth NH; Gustave SD; Caro A; Dubilier N Environ Microbiol; 2012 Jun; 14(6):1584-95. PubMed ID: 22672589 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. Xie JB; Du Z; Bai L; Tian C; Zhang Y; Xie JY; Wang T; Liu X; Chen X; Cheng Q; Chen S; Li J PLoS Genet; 2014 Mar; 10(3):e1004231. PubMed ID: 24651173 [TBL] [Abstract][Full Text] [Related]
19. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Remigi P; Zhu J; Young JPW; Masson-Boivin C Trends Microbiol; 2016 Jan; 24(1):63-75. PubMed ID: 26612499 [TBL] [Abstract][Full Text] [Related]
20. Comparative modifications in bacterial gill-endosymbiotic populations of the two bivalves Codakia orbiculata and Lucina pensylvanica during bacterial loss and reacquisition. Elisabeth NH; Caro A; Césaire T; Mansot JL; Escalas A; Sylvestre MN; Jean-Louis P; Gros O FEMS Microbiol Ecol; 2014 Sep; 89(3):646-58. PubMed ID: 24939560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]