These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38820647)
1. Using clinical text to refine unspecific condition codes in Dutch general practitioner EHR data. Seinen TM; Kors JA; van Mulligen EM; Fridgeirsson EA; Verhamme KM; Rijnbeek PR Int J Med Inform; 2024 Sep; 189():105506. PubMed ID: 38820647 [TBL] [Abstract][Full Text] [Related]
2. The added value of text from Dutch general practitioner notes in predictive modeling. Seinen TM; Kors JA; van Mulligen EM; Fridgeirsson E; Rijnbeek PR J Am Med Inform Assoc; 2023 Nov; 30(12):1973-1984. PubMed ID: 37587084 [TBL] [Abstract][Full Text] [Related]
3. Developing and testing a framework for coding general practitioners' free-text diagnoses in electronic medical records - a reliability study for generating training data in natural language processing. Wallnöfer A; Burgstaller JM; Weiss K; Rosemann T; Senn O; Markun S BMC Prim Care; 2024 Jul; 25(1):257. PubMed ID: 39014311 [TBL] [Abstract][Full Text] [Related]
4. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693 [TBL] [Abstract][Full Text] [Related]
5. Prediction task guided representation learning of medical codes in EHR. Cui L; Xie X; Shen Z J Biomed Inform; 2018 Aug; 84():1-10. PubMed ID: 29928997 [TBL] [Abstract][Full Text] [Related]
6. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
7. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record. Jamian L; Wheless L; Crofford LJ; Barnado A Arthritis Res Ther; 2019 Dec; 21(1):305. PubMed ID: 31888720 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
9. Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes. Humbert-Droz M; Mukherjee P; Gevaert O JMIR Med Inform; 2022 Mar; 10(3):e32903. PubMed ID: 35285805 [TBL] [Abstract][Full Text] [Related]
10. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800 [TBL] [Abstract][Full Text] [Related]
11. Supervised Text Classification System Detects Fontan Patients in Electronic Records With Higher Accuracy Than Guo Y; Al-Garadi MA; Book WM; Ivey LC; Rodriguez FH; Raskind-Hood CL; Robichaux C; Sarker A J Am Heart Assoc; 2023 Jul; 12(13):e030046. PubMed ID: 37345821 [TBL] [Abstract][Full Text] [Related]
13. Classifying Characteristics of Opioid Use Disorder From Hospital Discharge Summaries Using Natural Language Processing. Poulsen MN; Freda PJ; Troiani V; Davoudi A; Mowery DL Front Public Health; 2022; 10():850619. PubMed ID: 35615042 [TBL] [Abstract][Full Text] [Related]
14. Classification of Current Procedural Terminology Codes from Electronic Health Record Data Using Machine Learning. Burns ML; Mathis MR; Vandervest J; Tan X; Lu B; Colquhoun DA; Shah N; Kheterpal S; Saager L Anesthesiology; 2020 Apr; 132(4):738-749. PubMed ID: 32028374 [TBL] [Abstract][Full Text] [Related]
15. Towards automated clinical coding. Catling F; Spithourakis GP; Riedel S Int J Med Inform; 2018 Dec; 120():50-61. PubMed ID: 30409346 [TBL] [Abstract][Full Text] [Related]
16. Extracting information from the text of electronic medical records to improve case detection: a systematic review. Ford E; Carroll JA; Smith HE; Scott D; Cassell JA J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811 [TBL] [Abstract][Full Text] [Related]
17. Clinical Text Data in Machine Learning: Systematic Review. Spasic I; Nenadic G JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465 [TBL] [Abstract][Full Text] [Related]
18. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. Bai T; Chanda AK; Egleston BL; Vucetic S BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 4):123. PubMed ID: 30537974 [TBL] [Abstract][Full Text] [Related]
19. Potential application of item-response theory to interpretation of medical codes in electronic patient records. Dregan A; Grieve A; van Staa T; Gulliford MC; BMC Med Res Methodol; 2011 Dec; 11():168. PubMed ID: 22176509 [TBL] [Abstract][Full Text] [Related]
20. Disease Concept-Embedding Based on the Self-Supervised Method for Medical Information Extraction from Electronic Health Records and Disease Retrieval: Algorithm Development and Validation Study. Chen YP; Lo YH; Lai F; Huang CH J Med Internet Res; 2021 Jan; 23(1):e25113. PubMed ID: 33502324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]