BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38820748)

  • 1. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms.
    Thi Nguyen H; Choi W; Jeong S; Bae H; Oh S; Cho K
    J Hazard Mater; 2024 Aug; 474():134751. PubMed ID: 38820748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile organic compounds generation pathways and mechanisms from microplastics in water: Ultraviolet, chlorine and ultraviolet/chlorine disinfection.
    Liu R; Wu X; Zhang W; Chen Y; Fu J; Ou H
    J Hazard Mater; 2023 Jan; 441():129813. PubMed ID: 36063714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic inactivation of microorganisms in drinking water by short-term free chlorination and subsequent monochloramination.
    Zhang XJ; Chen C; Wang Y
    Biomed Environ Sci; 2007 Oct; 20(5):373-80. PubMed ID: 18188988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bismuth thiols and conventional disinfectants on drinking water biofilms.
    Codony F; Domenico P; Mas J
    J Appl Microbiol; 2003; 95(2):288-93. PubMed ID: 12859760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of chlorination resistance of biodegradable microplastics and conventional microplastics during the disinfection process in water treatments.
    Zhang X; Feng X; Ma Y; Niu Z; Zhang Y
    Sci Total Environ; 2024 Jan; 908():168229. PubMed ID: 37923261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive impacts of microplastics and chlorine on biological stability and microbial community formation in stagnant water.
    Chen X; Tao G; Wang Y; Wei W; Lian X; Shi Y; Chen S; Sun Y
    Water Res; 2022 Aug; 221():118734. PubMed ID: 35714469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV aging of microplastic polymers promotes their chemical transformation and byproduct formation upon chlorination.
    Liu H; Zhang X; Ji B; Qiang Z; Karanfil T; Liu C
    Sci Total Environ; 2023 Feb; 858(Pt 2):159842. PubMed ID: 36374755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total coliform and Escherichia coli in microplastic biofilms grown in wastewater and inactivation by peracetic acid.
    Boni W; Parrish K; Patil S; Fahrenfeld NL
    Water Environ Res; 2021 Mar; 93(3):334-342. PubMed ID: 32779310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli.
    Huang JJ; Hu HY; Wu YH; Wei B; Lu Y
    Chemosphere; 2013 Feb; 90(8):2247-53. PubMed ID: 23123077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorine and Monochloramine Disinfection of
    Buse HY; J Morris B; Struewing IT; Szabo JG
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.
    Miller HC; Wylie J; Dejean G; Kaksonen AH; Sutton D; Braun K; Puzon GJ
    Environ Sci Technol; 2015 Sep; 49(18):11125-31. PubMed ID: 26287820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous control of microorganisms and disinfection by-products by sequential chlorination.
    Chen C; Zhang XJ; He WJ; Han HD
    Biomed Environ Sci; 2007 Apr; 20(2):119-25. PubMed ID: 17624185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chlorination and hydrodynamic shear stress on the persistence of bacteriophages associated with drinking water biofilms.
    Pelleieux S; Mathieu L; Block JC; Gantzer C; Bertrand I
    J Appl Microbiol; 2016 Oct; 121(4):1189-97. PubMed ID: 27452787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of disinfectants for biofilm, protozoa and Legionella control.
    Loret JF; Robert S; Thomas V; Cooper AJ; McCoy WF; Lévi Y
    J Water Health; 2005 Dec; 3(4):423-33. PubMed ID: 16459847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant.
    Liu SS; Qu HM; Yang D; Hu H; Liu WL; Qiu ZG; Hou AM; Guo J; Li JW; Shen ZQ; Jin M
    Water Res; 2018 Jun; 136():131-136. PubMed ID: 29501757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.
    Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA
    Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaching easy water disinfection for all: Can in situ electrochlorination outperform conventional chlorination under realistic conditions?
    Atrashkevich A; Alum A; Stirling R; Abbaszadegan M; Garcia-Segura S
    Water Res; 2024 Feb; 250():121014. PubMed ID: 38128307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.
    Schwering M; Song J; Louie M; Turner RJ; Ceri H
    Biofouling; 2013 Sep; 29(8):917-28. PubMed ID: 23879183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.
    Al-Gabr HM; Zheng T; Yu X
    Sci Total Environ; 2013 Oct; 463-464():525-9. PubMed ID: 23831798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity.
    Li Y; Zhang X; Yang M; Liu J; Li W; Graham NJD; Li X; Yang B
    Chemosphere; 2017 Feb; 168():1302-1308. PubMed ID: 27919529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.