These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38820825)
1. Lysozyme functionalized silver nanoclusters as a dual channel optical sensor for the effective determination of glutathione. Sam S; S S; Girish Kumar K Talanta; 2024 Sep; 277():126326. PubMed ID: 38820825 [TBL] [Abstract][Full Text] [Related]
2. Polyethyleneimine capped silver nanoclusters based turn-off-on fluorescence sensor for the determination of glutathione. S S; Sam S; Girish Kumar K Talanta; 2024 Oct; 278():126541. PubMed ID: 39018760 [TBL] [Abstract][Full Text] [Related]
3. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
4. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods. Zhang H; Liu P; Wang H; Ji X; Zhao M; Song Z Anal Bioanal Chem; 2021 Mar; 413(6):1541-1547. PubMed ID: 32705288 [TBL] [Abstract][Full Text] [Related]
5. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag Li Y; Deng Y; Zhou X; Hu J Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302 [TBL] [Abstract][Full Text] [Related]
6. Water-soluble silver nanoclusters with multicolor fluorescence generated by dialdehyde nanofibrillated cellulose for biological imaging. Tang F; Wang B; Li J; Xu J; Zeng J; Gao W; Chen K Carbohydr Polym; 2024 Jul; 336():122138. PubMed ID: 38670763 [TBL] [Abstract][Full Text] [Related]
7. Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity. Huo Z; Lv Y; Wang N; Zhou C; Su X Mikrochim Acta; 2024 Apr; 191(5):282. PubMed ID: 38652326 [TBL] [Abstract][Full Text] [Related]
8. Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging. Sun Z; Li S; Jiang Y; Qiao Y; Zhang L; Xu L; Liu J; Qi W; Wang H Sci Rep; 2016 Feb; 6():20553. PubMed ID: 26847593 [TBL] [Abstract][Full Text] [Related]
10. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions. Tao Y; Lin Y; Huang Z; Ren J; Qu X Talanta; 2012 Jan; 88():290-4. PubMed ID: 22265501 [TBL] [Abstract][Full Text] [Related]
11. Surface engineered bimetallic gold/silver nanoclusters for in situ imaging of mercury ions in living organisms. Wang J; Wang W; Yang L; Zhao J; Han G; Yu X; ShenTu X; Ye Z Anal Bioanal Chem; 2022 Jun; 414(14):4235-4244. PubMed ID: 35449469 [TBL] [Abstract][Full Text] [Related]
12. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Zhou T; Rong M; Cai Z; Yang CJ; Chen X Nanoscale; 2012 Jul; 4(14):4103-6. PubMed ID: 22635158 [TBL] [Abstract][Full Text] [Related]
13. A label-free fluorescent probe for the detection of adenosine 5'‑triphosphate via inhibiting the aggregation-induced emission enhancement of glutathione modified silver nanoclusters triggered by zinc ion. Liu X; Yu Y; Lin B; Cao Y; Guo M Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():360-365. PubMed ID: 30802791 [TBL] [Abstract][Full Text] [Related]
14. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Xu X; Ji J; Chen P; Wu J; Jin Y; Zhang L; Du S Anal Chim Acta; 2020 Aug; 1125():41-49. PubMed ID: 32674779 [TBL] [Abstract][Full Text] [Related]
15. Glutathione protected bimetallic gold-platinum nanoclusters with near-infrared emission for ratiometric determination of silver ions. Gao YC; Wang C; Zhang CX; Li HW; Wu Y Mikrochim Acta; 2021 Jan; 188(2):50. PubMed ID: 33495877 [TBL] [Abstract][Full Text] [Related]
16. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Chen Z; Lu D; Cai Z; Dong C; Shuang S Luminescence; 2014 Nov; 29(7):722-7. PubMed ID: 24403131 [TBL] [Abstract][Full Text] [Related]
17. Silver ions involved fluorescence "on-off" responses of gold nanoclusters system for determination of carbendazim residues in fruit samples. Guan M; Guo Y; Yan X; Si X; Peng X; Lei Y; Shen X; Luo L; He H Food Chem; 2022 Aug; 386():132836. PubMed ID: 35381539 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Mo Q; Liu F; Gao J; Zhao M; Shao N Anal Chim Acta; 2018 Mar; 1003():49-55. PubMed ID: 29317029 [TBL] [Abstract][Full Text] [Related]
19. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Liu M; Li N; He Y; Ge Y; Song G Mikrochim Acta; 2018 Jan; 185(2):147. PubMed ID: 29594587 [TBL] [Abstract][Full Text] [Related]
20. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]